Suppr超能文献

抗菌治疗中的最佳药物协同作用。

Optimal drug synergy in antimicrobial treatments.

机构信息

Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

PLoS Comput Biol. 2010 Jun 3;6(6):e1000796. doi: 10.1371/journal.pcbi.1000796.

Abstract

The rapid proliferation of antibiotic-resistant pathogens has spurred the use of drug combinations to maintain clinical efficacy and combat the evolution of resistance. Drug pairs can interact synergistically or antagonistically, yielding inhibitory effects larger or smaller than expected from the drugs' individual potencies. Clinical strategies often favor synergistic interactions because they maximize the rate at which the infection is cleared from an individual, but it is unclear how such interactions affect the evolution of multi-drug resistance. We used a mathematical model of in vivo infection dynamics to determine the optimal treatment strategy for preventing the evolution of multi-drug resistance. We found that synergy has two conflicting effects: it clears the infection faster and thereby decreases the time during which resistant mutants can arise, but increases the selective advantage of these mutants over wild-type cells. When competition for resources is weak, the former effect is dominant and greater synergy more effectively prevents multi-drug resistance. However, under conditions of strong resource competition, a tradeoff emerges in which greater synergy increases the rate of infection clearance, but also increases the risk of multi-drug resistance. This tradeoff breaks down at a critical level of drug interaction, above which greater synergy has no effect on infection clearance, but still increases the risk of multi-drug resistance. These results suggest that the optimal strategy for suppressing multi-drug resistance is not always to maximize synergy, and that in some cases drug antagonism, despite its weaker efficacy, may better suppress the evolution of multi-drug resistance.

摘要

抗生素耐药性病原体的迅速增殖促使人们使用药物组合来维持临床疗效并对抗耐药性的进化。药物对可以协同或拮抗相互作用,产生比单个药物效力预期更大或更小的抑制作用。临床策略通常倾向于协同作用,因为它们可以最大限度地提高个体清除感染的速度,但尚不清楚这种相互作用如何影响多药耐药性的进化。我们使用体内感染动力学的数学模型来确定预防多药耐药性进化的最佳治疗策略。我们发现协同作用有两个相互矛盾的影响:它可以更快地清除感染,从而减少了耐药突变体出现的时间,但增加了这些突变体相对于野生型细胞的选择优势。当资源竞争较弱时,前一种效应占主导地位,更强的协同作用更有效地预防多药耐药性。然而,在资源竞争强烈的情况下,就会出现权衡,即更强的协同作用会增加感染清除率,但也会增加多药耐药性的风险。这种权衡在药物相互作用的临界水平上崩溃,超过这个水平,更强的协同作用对感染清除率没有影响,但仍会增加多药耐药性的风险。这些结果表明,抑制多药耐药性的最佳策略并不总是最大化协同作用,在某些情况下,药物拮抗作用(尽管疗效较弱)可能更能抑制多药耐药性的进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c37/2880566/6136596668e5/pcbi.1000796.g001.jpg

相似文献

1
Optimal drug synergy in antimicrobial treatments.
PLoS Comput Biol. 2010 Jun 3;6(6):e1000796. doi: 10.1371/journal.pcbi.1000796.
2
CombiANT: Antibiotic interaction testing made easy.
PLoS Biol. 2020 Sep 17;18(9):e3000856. doi: 10.1371/journal.pbio.3000856. eCollection 2020 Sep.
3
When the most potent combination of antibiotics selects for the greatest bacterial load: the smile-frown transition.
PLoS Biol. 2013;11(4):e1001540. doi: 10.1371/journal.pbio.1001540. Epub 2013 Apr 23.
5
In-vitro efficacy of synergistic antibiotic combinations in multidrug resistant Pseudomonas aeruginosa strains.
Yonsei Med J. 2010 Jan;51(1):111-6. doi: 10.3349/ymj.2010.51.1.111. Epub 2009 Dec 29.
7
Overcoming drug resistance in multi-drug resistant cancers and microorganisms: a conceptual framework.
Bioengineered. 2012 Sep-Oct;3(5):262-70. doi: 10.4161/bioe.21130. Epub 2012 Jul 3.
8
Resveratrol Increases Sensitivity of Clinical Colistin-Resistant Pseudomonas aeruginosa to Colistin and .
Microbiol Spectr. 2023 Feb 14;11(1):e0199222. doi: 10.1128/spectrum.01992-22. Epub 2022 Dec 8.
10
An approach for the evaluation of synergy between antimicrobials.
Int J Antimicrob Agents. 2003 Mar;21(3):274-8. doi: 10.1016/s0924-8579(02)00348-5.

引用本文的文献

3
Protein Spatial Structure Meets Artificial Intelligence: Revolutionizing Drug Synergy-Antagonism in Precision Medicine.
Adv Sci (Weinh). 2025 Sep;12(33):e07764. doi: 10.1002/advs.202507764. Epub 2025 Aug 7.
6
Effectiveness of antimicrobial agent combinations against carbapenem-producing with KPC variants in China.
Front Microbiol. 2025 Jan 22;15:1519319. doi: 10.3389/fmicb.2024.1519319. eCollection 2024.
7
Drug combinations targeting antibiotic resistance.
NPJ Antimicrob Resist. 2024 Oct 3;2(1):29. doi: 10.1038/s44259-024-00047-2.
8
Dynamic collateral sensitivity profiles highlight opportunities and challenges for optimizing antibiotic treatments.
PLoS Biol. 2025 Jan 8;23(1):e3002970. doi: 10.1371/journal.pbio.3002970. eCollection 2025 Jan.
9
Linking spatial drug heterogeneity to microbial growth dynamics in theory and experiment.
bioRxiv. 2024 Nov 28:2024.11.21.624783. doi: 10.1101/2024.11.21.624783.
10
Navigating collateral sensitivity: insights into the mechanisms and applications of antibiotic resistance trade-offs.
Front Microbiol. 2024 Oct 24;15:1478789. doi: 10.3389/fmicb.2024.1478789. eCollection 2024.

本文引用的文献

1
Resource competition and within-host disease dynamics.
Trends Ecol Evol. 1996 Sep;11(9):386-9. doi: 10.1016/0169-5347(96)20067-9.
2
Evolution of resistance to targeted anti-cancer therapies during continuous and pulsed administration strategies.
PLoS Comput Biol. 2009 Nov;5(11):e1000557. doi: 10.1371/journal.pcbi.1000557. Epub 2009 Nov 6.
3
Drug interactions and the evolution of antibiotic resistance.
Nat Rev Microbiol. 2009 Jun;7(6):460-6. doi: 10.1038/nrmicro2133.
4
Drug interactions modulate the potential for evolution of resistance.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14918-23. doi: 10.1073/pnas.0800944105. Epub 2008 Sep 24.
5
Accelerated evolution of resistance in multidrug environments.
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13977-81. doi: 10.1073/pnas.0805965105. Epub 2008 Sep 8.
6
Antibiotic resistance--what's dosing got to do with it?
Crit Care Med. 2008 Aug;36(8):2433-40. doi: 10.1097/CCM.0b013e318180fe62.
7
Modelling within-host spatiotemporal dynamics of invasive bacterial disease.
PLoS Biol. 2008 Apr 8;6(4):e74. doi: 10.1371/journal.pbio.0060074.
8
The evolution of quorum sensing in bacterial biofilms.
PLoS Biol. 2008 Jan;6(1):e14. doi: 10.1371/journal.pbio.0060014.
9
Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing.
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9451-6. doi: 10.1073/pnas.0609839104. Epub 2007 May 21.
10
Antibiotic interactions that select against resistance.
Nature. 2007 Apr 5;446(7136):668-71. doi: 10.1038/nature05685.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验