Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
J R Soc Interface. 2011 Feb 6;8(55):269-81. doi: 10.1098/rsif.2010.0212. Epub 2010 Jun 9.
In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected 'neutral networks' in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 10(45) logic circuits ('genotypes') and 10(19) logic functions ('phenotypes'). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry.
在生物系统中,单个表型通常由多个基因型采用。例如,蛋白质结构表型,其中每个结构都可以由无数的单个氨基酸序列基因型采用。这些基因型在基因型空间中形成巨大的连接“中性网络”。这些中性网络的大小不仅赋予了生物系统对遗传变化的鲁棒性,还赋予了进化出大量新表型的能力,这些表型出现在任何一个中性网络附近。技术系统是否可以被设计具有类似的特性还知之甚少。在这里,我们针对一类计算数字逻辑功能的可编程电子电路提出了这个问题。这种电路的功能灵活性在许多应用中都很重要,包括将进化原理应用于电路设计。它们计算的功能是所有数字计算的核心。我们探索了一个由 10(45)个逻辑电路(“基因型”)和 10(19)个逻辑功能(“表型”)组成的广阔空间。我们证明了计算相同逻辑功能的电路在跨越电路空间的大型中性网络中连接。它们的鲁棒性或容错性差异很大。每个中性网络的附近都包含具有广泛新型功能的电路。计算不同功能的两个电路通常可以通过改变其架构很少的变化相互转换。这些观察结果表明,对于生物系统进化性很重要的特性存在于一种商业上重要的电子电路类别中。它们还指出了产生容错、自适应和可进化电子电路的通用方法。