Suppr超能文献

Fgf-9 对于长骨修复中的血管生成和成骨作用是必需的。

Fgf-9 is required for angiogenesis and osteogenesis in long bone repair.

机构信息

Children's Surgical Research Program, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11853-8. doi: 10.1073/pnas.1003317107. Epub 2010 Jun 14.

Abstract

Bone healing requires a complex interaction of growth factors that establishes an environment for efficient bone regeneration. Among these, FGFs have been considered important for intrinsic bone-healing capacity. In this study, we analyzed the role of Fgf-9 in long bone repair. One-millimeter unicortical defects were created in tibias of Fgf-9(+/-) and wild-type mice. Histomorphometry revealed that half-dose gene of Fgf-9 markedly reduced bone regeneration as compared with wild-type. Both immunohistochemistry and RT-PCR analysis revealed markedly decreased levels of proliferating cell nuclear antigen (PCNA), Runt-related transcription factor 2 (Runx2), osteocalcin, Vega-a, and platelet endothelial cell adhesion molecule 1 (PECAM-1) in Fgf-9(+/-) defects. muCT angiography indicated dramatic impairment of neovascularization in Fgf-9(+/-) mice as compared with controls. Treatment with FGF-9 protein promoted angiogenesis and successfully rescued the healing capacity of Fgf-9(+/-) mice. Importantly, although other pro-osteogenic factors [Fgf-2, Fgf-18, and bone morphogenic protein 2 (Bmp-2)] still were present in Fgf-9(+/-) mice, they could not compensate for the haploinsufficiency of the Fgf-9 gene. Therefore, endogenous Fgf-9 seems to play an important role in long bone repair. Taken together our data suggest a unique role for Fgf-9 in bone healing, presumably by initiating angiogenesis through Vegf-a. Moreover, this study further supports the embryonic phenotype previously observed in the developing limb, thus promoting the concept that healing processes in adult organisms may recapitulate embryonic skeletal development.

摘要

骨愈合需要生长因子的复杂相互作用,这些生长因子为有效的骨再生建立了环境。其中,FGFs 被认为对内在骨愈合能力很重要。在这项研究中,我们分析了 Fgf-9 在长骨修复中的作用。在 Fgf-9(+/-)和野生型小鼠的胫骨中创建了 1 毫米的单皮质缺损。组织形态计量学显示,与野生型相比,Fgf-9 的半剂量基因显著减少了骨再生。免疫组织化学和 RT-PCR 分析显示,Fgf-9(+/-)缺损中增殖细胞核抗原 (PCNA)、Runt 相关转录因子 2 (Runx2)、骨钙素、Vega-a 和血小板内皮细胞粘附分子 1 (PECAM-1)的水平明显降低。μCT 血管造影显示,与对照组相比,Fgf-9(+/-)小鼠的新生血管化明显受损。FGF-9 蛋白的治疗促进了血管生成,并成功挽救了 Fgf-9(+/-)小鼠的愈合能力。重要的是,尽管 Fgf-9(+/-)小鼠中仍存在其他促成骨因子 [Fgf-2、Fgf-18 和骨形态发生蛋白 2 (Bmp-2)],但它们不能弥补 Fgf-9 基因的单倍体不足。因此,内源性 Fgf-9 似乎在长骨修复中发挥重要作用。总之,我们的数据表明 Fgf-9 在骨愈合中具有独特的作用,可能通过 Vegf-a 启动血管生成。此外,这项研究进一步支持了在发育中的肢体中观察到的胚胎表型,从而促进了这样的概念,即成年生物体的愈合过程可能重演胚胎骨骼发育。

相似文献

1
Fgf-9 is required for angiogenesis and osteogenesis in long bone repair.
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11853-8. doi: 10.1073/pnas.1003317107. Epub 2010 Jun 14.
2
Fgf-18 is required for osteogenesis but not angiogenesis during long bone repair.
Tissue Eng Part A. 2011 Aug;17(15-16):2061-9. doi: 10.1089/ten.TEA.2010.0719. Epub 2011 Jun 1.
3
Application of VEGFA and FGF-9 enhances angiogenesis, osteogenesis and bone remodeling in type 2 diabetic long bone regeneration.
PLoS One. 2015 Mar 5;10(3):e0118823. doi: 10.1371/journal.pone.0118823. eCollection 2015.
4
Osteoblast-derived EGFL6 couples angiogenesis to osteogenesis during bone repair.
Theranostics. 2021 Sep 27;11(20):9738-9751. doi: 10.7150/thno.60902. eCollection 2021.
5
Percutaneous CO2 Treatment Accelerates Bone Generation During Distraction Osteogenesis in Rabbits.
Clin Orthop Relat Res. 2020 Aug;478(8):1922-1935. doi: 10.1097/CORR.0000000000001288.
10
A comparative analysis of the osteogenic effects of BMP-2, FGF-2, and VEGFA in a calvarial defect model.
Tissue Eng Part A. 2012 May;18(9-10):1079-86. doi: 10.1089/ten.TEA.2011.0537. Epub 2012 Feb 28.

引用本文的文献

1
FGF9 treatment reduces off-target chondrocytes from iPSC-derived kidney organoids.
NPJ Regen Med. 2025 Aug 30;10(1):41. doi: 10.1038/s41536-025-00428-9.
3
Therapeutic potential of stem cell-derived exosomes for bone tissue regeneration around prostheses.
J Orthop Translat. 2025 Apr 11;52:85-96. doi: 10.1016/j.jot.2025.03.007. eCollection 2025 May.
4
Cell communication and relevant signaling pathways in osteogenesis-angiogenesis coupling.
Bone Res. 2025 Apr 7;13(1):45. doi: 10.1038/s41413-025-00417-0.
5
Communication between endothelial cells and osteoblasts in regulation of bone homeostasis: Notch players.
Stem Cell Res Ther. 2025 Feb 7;16(1):56. doi: 10.1186/s13287-025-04176-x.
6
From the microspheres to scaffolds: advances in polymer microsphere scaffolds for bone regeneration applications.
Biomater Transl. 2024 Sep 28;5(3):274-299. doi: 10.12336/biomatertransl.2024.03.005. eCollection 2024.
8
Skeletal dysmorphology and mineralization defects in Fgf20 KO mice.
Front Endocrinol (Lausanne). 2024 Jul 26;15:1286365. doi: 10.3389/fendo.2024.1286365. eCollection 2024.
9
regulates bone marrow mesenchymal stem cell fate and bone-fat balance in osteoporosis by PI3K/AKT/Hippo and MEK/ERK signaling.
Int J Biol Sci. 2024 Jun 17;20(9):3461-3479. doi: 10.7150/ijbs.94863. eCollection 2024.
10

本文引用的文献

3
Fibroblast growth factor expression during skeletal fracture healing in mice.
Dev Dyn. 2009 Mar;238(3):766-74. doi: 10.1002/dvdy.21882.
4
Differential FGF ligands and FGF receptors expression pattern in frontal and parietal calvarial bones.
Cells Tissues Organs. 2009;190(3):158-69. doi: 10.1159/000202789. Epub 2009 Feb 13.
5
Fracture vascularity and bone healing: a systematic review of the role of VEGF.
Injury. 2008 Sep;39 Suppl 2:S45-57. doi: 10.1016/S0020-1383(08)70015-9.
6
Bone remodeling during fracture repair: The cellular picture.
Semin Cell Dev Biol. 2008 Oct;19(5):459-66. doi: 10.1016/j.semcdb.2008.07.004. Epub 2008 Jul 25.
7
Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling.
J Bone Miner Res. 2008 May;23(5):596-609. doi: 10.1359/jbmr.080103.
8
FGF9 and SHH regulate mesenchymal Vegfa expression and development of the pulmonary capillary network.
Development. 2007 Oct;134(20):3743-52. doi: 10.1242/dev.004879. Epub 2007 Sep 19.
9
Bone regeneration is regulated by wnt signaling.
J Bone Miner Res. 2007 Dec;22(12):1913-23. doi: 10.1359/jbmr.070802.
10
FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod.
Dev Biol. 2007 Jul 15;307(2):300-13. doi: 10.1016/j.ydbio.2007.04.048. Epub 2007 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验