Suppr超能文献

表面残留物动态组织水桥以增强蛋白质之间的电子转移。

Surface residues dynamically organize water bridges to enhance electron transfer between proteins.

机构信息

Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4.

出版信息

Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11799-804. doi: 10.1073/pnas.0914457107. Epub 2010 Jun 14.

Abstract

Cellular energy production depends on electron transfer (ET) between proteins. In this theoretical study, we investigate the impact of structural and conformational variations on the electronic coupling between the redox proteins methylamine dehydrogenase and amicyanin from Paracoccus denitrificans. We used molecular dynamics simulations to generate configurations over a duration of 40 ns (sampled at 100-fs intervals) in conjunction with an ET pathway analysis to estimate the ET coupling strength of each configuration. In the wild-type complex, we find that the most frequently occurring molecular configurations afford superior electronic coupling due to the consistent presence of a water molecule hydrogen-bonded between the donor and acceptor sites. We attribute the persistence of this water bridge to a "molecular breakwater" composed of several hydrophobic residues surrounding the acceptor site. The breakwater supports the function of nearby solvent-organizing residues by limiting the exchange of water molecules between the sterically constrained ET region and the more turbulent surrounding bulk. When the breakwater is affected by a mutation, bulk solvent molecules disrupt the water bridge, resulting in reduced electronic coupling that is consistent with recent experimental findings. Our analysis suggests that, in addition to enabling the association and docking of the proteins, surface residues stabilize and control interprotein solvent dynamics in a concerted way.

摘要

细胞能量产生依赖于蛋白质之间的电子转移 (ET)。在这项理论研究中,我们研究了结构和构象变化对来自脱氮副球菌甲基胺脱氢酶和天青蛋白的氧化还原蛋白之间电子耦合的影响。我们使用分子动力学模拟在 40 ns 的时间内生成配置(每隔 100-fs 采样一次),并结合 ET 途径分析来估计每个配置的 ET 耦合强度。在野生型复合物中,我们发现最常出现的分子构象由于供体和受体位点之间氢键结合的水分子的存在而提供了更好的电子耦合。我们将这种水桥的持久性归因于由围绕受体位点的几个疏水性残基组成的“分子防波堤”。防波堤通过限制在空间受限的 ET 区域和更混乱的周围整体之间的水分子交换,来支持附近溶剂组织残基的功能。当防波堤受到突变影响时,大量溶剂分子会破坏水桥,导致电子耦合减少,这与最近的实验结果一致。我们的分析表明,除了能够促进蛋白质的结合和对接之外,表面残基还以协同的方式稳定和控制蛋白质间溶剂的动力学。

相似文献

引用本文的文献

3
Lack of Specificity in Periplasmic Electron Transfer.周质电子转移缺乏特异性。
J Bacteriol. 2022 Dec 20;204(12):e0032222. doi: 10.1128/jb.00322-22. Epub 2022 Nov 16.
9
Mesoscale molecular network formation in amorphous organic materials.无定形有机材料中的介观分子网络形成。
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10055-60. doi: 10.1073/pnas.1409514111. Epub 2014 Jun 30.

本文引用的文献

1
Steering electrons on moving pathways.引导沿移动轨迹运动的电子。
Acc Chem Res. 2009 Oct 20;42(10):1669-78. doi: 10.1021/ar900123t.
2
4
Water as an active constituent in cell biology.水作为细胞生物学中的一种活性成分。
Chem Rev. 2008 Jan;108(1):74-108. doi: 10.1021/cr068037a. Epub 2007 Dec 21.
5
Nanosecond electron tunneling between the hemes in cytochrome bo3.细胞色素bo3中血红素之间的纳秒级电子隧穿
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20811-4. doi: 10.1073/pnas.0709876105. Epub 2007 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验