Wu Xiaojing, Hénin Jérôme, Baciou Laura, Baaden Marc, Cailliez Fabien, de la Lande Aurélien
CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.
Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France.
Front Chem. 2021 May 4;9:650651. doi: 10.3389/fchem.2021.650651. eCollection 2021.
NOX5 is a member of the NADPH oxidase family which is dedicated to the production of reactive oxygen species. The molecular mechanisms governing transmembrane electron transfer (ET) that permits to shuttle electrons over the biological membrane have remained elusive for a long time. Using computer simulations, we report conformational dynamics of NOX5 embedded within a realistic membrane environment. We assess the stability of the protein within the membrane and monitor the existence of cavities that could accommodate dioxygen molecules. We investigate the heme-to-heme electron transfer. We find a reaction free energy of a few tenths of eV (ca. -0.3 eV) and a reorganization free energy of around 1.1 eV (0.8 eV after including electrostatic induction corrections). The former indicates thermodynamically favorable ET, while the latter falls in the expected values for transmembrane inter-heme ET. We estimate the electronic coupling to fall in the range of the μeV. We identify electron tunneling pathways showing that not only the W378 residue is playing a central role, but also F348. Finally, we reveal the existence of two connected Obinding pockets near the outer heme with fast exchange between the two sites on the nanosecond timescale. We show that when the terminal heme is reduced, O binds closer to it, affording a more efficient tunneling pathway than when the terminal heme is oxidized, thereby providing an efficient mechanism to catalyze superoxide production in the final step. Overall, our study reveals some key molecular mechanisms permitting reactive oxygen species production by NOX5 and paves the road for further investigation of ET processes in the wide family of NADPH oxidases by computer simulations.
NOX5是NADPH氧化酶家族的成员,该家族致力于产生活性氧。长期以来,控制跨膜电子转移(ET)从而使电子穿梭于生物膜上的分子机制一直难以捉摸。通过计算机模拟,我们报告了嵌入真实膜环境中的NOX5的构象动力学。我们评估了蛋白质在膜内的稳定性,并监测了可能容纳双氧分子的腔的存在。我们研究了血红素间的电子转移。我们发现反应自由能为零点几电子伏特(约-0.3电子伏特),重组自由能约为1.1电子伏特(包括静电感应校正后为0.8电子伏特)。前者表明电子转移在热力学上是有利的,而后者落在跨膜血红素间电子转移的预期值范围内。我们估计电子耦合落在微电子伏特范围内。我们确定了电子隧穿途径,表明不仅W378残基起核心作用,F348也起核心作用。最后,我们揭示了在外血红素附近存在两个相连的O结合口袋,在纳秒时间尺度上两个位点之间有快速交换。我们表明,当末端血红素被还原时,O与之结合得更近,提供了一条比末端血红素被氧化时更有效的隧穿途径,从而在最后一步提供了一种催化超氧化物产生的有效机制。总体而言,我们的研究揭示了一些允许NOX5产生活性氧的关键分子机制,并为通过计算机模拟进一步研究NADPH氧化酶大家族中的电子转移过程铺平了道路。