Suppr超能文献

从识别到决策:扩展和测试基于识别的多选项推理模型。

From recognition to decisions: extending and testing recognition-based models for multialternative inference.

机构信息

Max Planck Institute for Human Development, Berlin, Germany.

出版信息

Psychon Bull Rev. 2010 Jun;17(3):287-309. doi: 10.3758/PBR.17.3.287.

Abstract

The recognition heuristic is a noncompensatory strategy for inferring which of two alternatives, one recognized and the other not, scores higher on a criterion. According to it, such inferences are based solely on recognition. We generalize this heuristic to tasks with multiple alternatives, proposing a model of how people identify the consideration sets from which they make their final decisions. In doing so, we address concerns about the heuristic's adequacy as a model of behavior: Past experiments have led several authors to conclude that there is no evidence for a noncompensatory use of recognition but clear evidence that recognition is integrated with other information. Surprisingly, however, in no study was this competing hypothesis--the compensatory integration of recognition--formally specified as a computational model. In four studies, we specify five competing models, conducting eight model comparisons. In these model comparisons, the recognition heuristic emerges as the best predictor of people's inferences.

摘要

启发式识别是一种非补偿策略,用于推断两个备选方案中的哪一个在标准上得分更高,一个是已识别的,另一个则未被识别。根据该策略,此类推断仅基于识别。我们将该启发式方法推广到具有多个备选方案的任务中,提出了一种人们如何从最终决策的考虑集中识别的模型。在这样做的过程中,我们解决了关于启发式作为行为模型的充分性的问题:过去的实验使几位作者得出结论,没有证据表明启发式是非补偿性的使用,但有明确的证据表明识别与其他信息相结合。然而,令人惊讶的是,在任何一项研究中,都没有正式将这一竞争假设——即识别的补偿性整合——作为计算模型来指定。在四项研究中,我们指定了五个竞争模型,并进行了八次模型比较。在这些模型比较中,识别启发式成为预测人们推断的最佳指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验