Suppr超能文献

设计和测试针对视网膜退行性病变患者的场景增强算法。

Designing and testing scene enhancement algorithms for patients with retina degenerative disorders.

机构信息

Institute of Biomedical Engineering, Imperial College, South Kensington, London, UK.

出版信息

Biomed Eng Online. 2010 Jun 18;9:27. doi: 10.1186/1475-925X-9-27.

Abstract

BACKGROUND

Retina degenerative disorders represent the primary cause of blindness in UK and in the developed world. In particular, Age Related Macular Degeneration (AMD) and Retina Pigmentosa (RP) diseases are of interest to this study. We have therefore created new image processing algorithms for enhancing the visual scenes for them.

METHODS

In this paper we present three novel image enhancement techniques aimed at enhancing the remaining visual information for patients suffering from retina dystrophies. Currently, the only effective way to test novel technology for visual enhancement is to undergo testing on large numbers of patients. To test our techniques, we have therefore built a retinal image processing model and compared the results to data from patient testing. In particular we focus on the ability of our image processing techniques to achieve improved face detection and enhanced edge perception.

RESULTS

Results from our model are compared to actual data obtained from testing the performance of these algorithms on 27 patients with an average visual acuity of 0.63 and an average contrast sensitivity of 1.22. Results show that Tinted Reduced Outlined Nature (TRON) and Edge Overlaying algorithms are most beneficial for dynamic scenes such as motion detection. Image Cartoonization was most beneficial for spatial feature detection such as face detection. Patient's stated that they would most like to see Cartoonized images for use in daily life.

CONCLUSIONS

Results obtained from our retinal model and from patients show that there is potential for these image processing techniques to improve visual function amongst the visually impaired community. In addition our methodology using face detection and efficiency of perceived edges in determining potential benefit derived from different image enhancement algorithms could also prove to be useful in quantitatively assessing algorithms in future studies.

摘要

背景

视网膜退行性疾病是英国和发达国家致盲的主要原因。特别是年龄相关性黄斑变性(AMD)和视网膜色素变性(RP)疾病是本研究关注的重点。因此,我们为这些疾病创建了新的图像处理算法来增强视觉场景。

方法

在本文中,我们提出了三种新颖的图像增强技术,旨在增强患有视网膜营养不良患者的剩余视觉信息。目前,测试视觉增强新技术的唯一有效方法是对大量患者进行测试。为了测试我们的技术,我们因此构建了一个视网膜图像处理模型,并将结果与患者测试数据进行了比较。特别是,我们专注于我们的图像处理技术在实现改进的人脸检测和增强的边缘感知方面的能力。

结果

我们的模型结果与从 27 名平均视力为 0.63 和平均对比敏感度为 1.22 的患者中测试这些算法性能获得的实际数据进行了比较。结果表明,Tinted Reduced Outlined Nature(TRON)和边缘叠加算法对于动态场景(例如运动检测)最有益。图像卡通化对于空间特征检测(例如人脸检测)最有益。患者表示,他们最希望看到用于日常生活的卡通化图像。

结论

从我们的视网膜模型和患者获得的结果表明,这些图像处理技术有可能改善视障人群的视觉功能。此外,我们使用人脸检测和感知边缘效率的方法来确定不同图像增强算法带来的潜在益处,也可能在未来的研究中证明对定量评估算法非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af5/2914026/1726a706107e/1475-925X-9-27-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验