Pouillot Flavie, Blois Hélène, Iris François
Pherecydes Pharma, Romainville, France.
Biosecur Bioterror. 2010 Jun;8(2):155-69. doi: 10.1089/bsp.2009.0057.
Natural outbreaks of multidrug-resistant microorganisms can cause widespread devastation, and several can be used or engineered as agents of bioterrorism. From a biosecurity standpoint, the capacity to detect and then efficiently control, within hours, the spread and the potential pathological effects of an emergent outbreak, for which there may be no effective antibiotics or vaccines, become key challenges that must be met. We turned to phage engineering as a potentially highly flexible and effective means to both detect and eradicate threats originating from emergent (uncharacterized) bacterial strains. To this end, we developed technologies allowing us to (1) concurrently modify multiple regions within the coding sequence of a gene while conserving intact the remainder of the gene, (2) reversibly interrupt the lytic cycle of an obligate virulent phage (T4) within its host, (3) carry out efficient insertion, by homologous recombination, of any number of engineered genes into the deactivated genomes of a T4 wild-type phage population, and (4) reactivate the lytic cycle, leading to the production of engineered infective virulent recombinant progeny. This allows the production of very large, genetically engineered lytic phage banks containing, in an E. coli host, a very wide spectrum of variants for any chosen phage-associated function, including phage host-range. Screening of such a bank should allow the rapid isolation of recombinant T4 particles capable of detecting (ie, diagnosing), infecting, and destroying hosts belonging to gram-negative bacterial species far removed from the original E. coli host.
多重耐药微生物的自然爆发可造成广泛破坏,其中一些还可被用作生物恐怖主义制剂或进行改造用作此类制剂。从生物安全的角度来看,对于可能不存在有效抗生素或疫苗的突发疫情,要在数小时内检测并有效控制其传播及潜在病理影响,成为必须应对的关键挑战。我们求助于噬菌体工程,将其作为一种可能具有高度灵活性和有效性的手段,用于检测和根除源自新出现(未定性)细菌菌株的威胁。为此,我们开发了多种技术,使我们能够:(1) 同时修饰基因编码序列内的多个区域,同时保持基因其余部分完整无损;(2) 在其宿主内可逆地中断专性烈性噬菌体(T4)的裂解周期;(3) 通过同源重组将任意数量的工程基因高效插入T4野生型噬菌体群体的失活基因组中;(4) 重新激活裂解周期,从而产生工程化的感染性烈性重组后代。这使得能够构建非常庞大的基因工程裂解噬菌体库,在大肠杆菌宿主中包含针对任何选定的噬菌体相关功能(包括噬菌体宿主范围)的非常广泛的变体。筛选这样一个文库应能快速分离出能够检测(即诊断)、感染并破坏与原始大肠杆菌宿主亲缘关系很远的革兰氏阴性细菌物种宿主的重组T4颗粒。