Suppr超能文献

基因工程烈性噬菌体文库在新兴病原菌检测与控制中的应用

Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria.

作者信息

Pouillot Flavie, Blois Hélène, Iris François

机构信息

Pherecydes Pharma, Romainville, France.

出版信息

Biosecur Bioterror. 2010 Jun;8(2):155-69. doi: 10.1089/bsp.2009.0057.

Abstract

Natural outbreaks of multidrug-resistant microorganisms can cause widespread devastation, and several can be used or engineered as agents of bioterrorism. From a biosecurity standpoint, the capacity to detect and then efficiently control, within hours, the spread and the potential pathological effects of an emergent outbreak, for which there may be no effective antibiotics or vaccines, become key challenges that must be met. We turned to phage engineering as a potentially highly flexible and effective means to both detect and eradicate threats originating from emergent (uncharacterized) bacterial strains. To this end, we developed technologies allowing us to (1) concurrently modify multiple regions within the coding sequence of a gene while conserving intact the remainder of the gene, (2) reversibly interrupt the lytic cycle of an obligate virulent phage (T4) within its host, (3) carry out efficient insertion, by homologous recombination, of any number of engineered genes into the deactivated genomes of a T4 wild-type phage population, and (4) reactivate the lytic cycle, leading to the production of engineered infective virulent recombinant progeny. This allows the production of very large, genetically engineered lytic phage banks containing, in an E. coli host, a very wide spectrum of variants for any chosen phage-associated function, including phage host-range. Screening of such a bank should allow the rapid isolation of recombinant T4 particles capable of detecting (ie, diagnosing), infecting, and destroying hosts belonging to gram-negative bacterial species far removed from the original E. coli host.

摘要

多重耐药微生物的自然爆发可造成广泛破坏,其中一些还可被用作生物恐怖主义制剂或进行改造用作此类制剂。从生物安全的角度来看,对于可能不存在有效抗生素或疫苗的突发疫情,要在数小时内检测并有效控制其传播及潜在病理影响,成为必须应对的关键挑战。我们求助于噬菌体工程,将其作为一种可能具有高度灵活性和有效性的手段,用于检测和根除源自新出现(未定性)细菌菌株的威胁。为此,我们开发了多种技术,使我们能够:(1) 同时修饰基因编码序列内的多个区域,同时保持基因其余部分完整无损;(2) 在其宿主内可逆地中断专性烈性噬菌体(T4)的裂解周期;(3) 通过同源重组将任意数量的工程基因高效插入T4野生型噬菌体群体的失活基因组中;(4) 重新激活裂解周期,从而产生工程化的感染性烈性重组后代。这使得能够构建非常庞大的基因工程裂解噬菌体库,在大肠杆菌宿主中包含针对任何选定的噬菌体相关功能(包括噬菌体宿主范围)的非常广泛的变体。筛选这样一个文库应能快速分离出能够检测(即诊断)、感染并破坏与原始大肠杆菌宿主亲缘关系很远的革兰氏阴性细菌物种宿主的重组T4颗粒。

相似文献

2
Phage Engineering for Targeted Multidrug-Resistant .噬菌体工程靶向治疗多重耐药
Int J Mol Sci. 2023 Jan 27;24(3):2459. doi: 10.3390/ijms24032459.
5
Genetically modified bacteriophages in applied microbiology.应用微生物学中的基因工程噬菌体
J Appl Microbiol. 2016 Sep;121(3):618-33. doi: 10.1111/jam.13207. Epub 2016 Jul 26.
6
Applications of designer phage encoding recombinant gene payloads.编码重组基因载荷的定制噬菌体的应用。
Trends Biotechnol. 2024 Mar;42(3):326-338. doi: 10.1016/j.tibtech.2023.09.008. Epub 2023 Oct 11.
10
Genetically modified bacteriophages.转基因噬菌体
Integr Biol (Camb). 2016 Apr 18;8(4):465-74. doi: 10.1039/c5ib00267b. Epub 2016 Feb 24.

引用本文的文献

8
Control of λ Lysogenic Cells by Synthetic λ Phage Carrying .通过携带. 的人工 λ 噬菌体控制 λ 溶原细胞
ACS Synth Biol. 2022 Nov 18;11(11):3829-3835. doi: 10.1021/acssynbio.2c00409. Epub 2022 Nov 3.

本文引用的文献

4
Kinetics of phage-mediated biocontrol of bacteria.噬菌体介导的细菌生物防治动力学
Foodborne Pathog Dis. 2009 Sep;6(7):807-15. doi: 10.1089/fpd.2008.0242.
6
Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy.工程噬菌体靶向基因网络作为抗生素治疗的佐剂
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4629-34. doi: 10.1073/pnas.0800442106. Epub 2009 Mar 2.
7
RNA processing and decay in bacteriophage T4.噬菌体T4中的RNA加工与降解
Prog Mol Biol Transl Sci. 2009;85:43-89. doi: 10.1016/S0079-6603(08)00802-7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验