The Wellcome Trust Centre for Neuroimaging, UCL, UK.
Neuroimage. 2010 Oct 15;53(1):161-70. doi: 10.1016/j.neuroimage.2010.05.076. Epub 2010 Jun 4.
In this work, we propose statistical methods to perform inference on the spatial distribution of topological features (e.g. maxima or clusters) in statistical parametric maps (SPMs). This contrasts with local inference on the features per se (e.g., height or extent), which is well-studied (e.g. Friston et al., 1991, 1994; Worsley et al., 1992, 2003, 2004). We present a Bayesian approach to detecting experimentally-induced patterns of distributed responses in SPMs with anisotropic, non-stationary noise and arbitrary geometry. We extend the framework to accommodate fixed- and random-effects analyses at the within and between-subject levels respectively. We illustrate the method by characterising the anatomy of language at different scales of functional segregation.
在这项工作中,我们提出了统计方法,以便对统计参数映射 (SPM) 中拓扑特征(例如极大值或聚类)的空间分布进行推断。这与对特征本身(例如高度或范围)进行局部推断形成对比,后者已经得到了充分研究(例如 Friston 等人,1991 年,1994 年;Worsley 等人,1992 年,2003 年,2004 年)。我们提出了一种贝叶斯方法,用于检测 SPM 中具有各向异性、非平稳噪声和任意几何形状的实验诱导的分布式响应模式。我们扩展了该框架,以分别在个体内和个体间水平上适应固定效应和随机效应分析。我们通过在不同功能分离尺度上描绘语言的解剖结构来说明该方法。