Department of Radiology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
Phys Med Biol. 2010 Jul 7;55(13):3905-16. doi: 10.1088/0031-9155/55/13/022.
In the medical imaging field, discrete gradient transform (DGT) is widely used as a sparsifying operator to define the total variation (TV). Recently, TV minimization has become a hot topic in image reconstruction and is usually implemented using the steepest descent method (SDM). Since TV minimization with the SDM takes a long computational time, here we construct a pseudo-inverse of the DGT and adapt a soft-threshold filtering algorithm, whose convergence and efficiency have been theoretically proven. Also, we construct a pseudo-inverse of the discrete difference transform (DDT) and design an algorithm for L1 minimization of the total difference. These two methods are evaluated in numerical simulation. The results demonstrate the merits of the proposed techniques.
在医学成像领域,离散梯度变换(DGT)被广泛用作稀疏算子来定义总变差(TV)。最近,TV 最小化已成为图像重建的热门话题,通常使用最速下降法(SDM)来实现。由于 SDM 下的 TV 最小化需要很长的计算时间,因此我们构造了 DGT 的伪逆,并采用了一种软阈值滤波算法,该算法的收敛性和效率已在理论上得到证明。此外,我们还构造了离散差分变换(DDT)的伪逆,并设计了一种用于总差分的 L1 最小化的算法。这两种方法在数值模拟中进行了评估。结果表明了所提出技术的优点。