MRC Centre for Outbreak Analysis and Modelling, Imperial College London, Department of Infectious Disease Epidemiology, St Mary's Campus, , London W2 1PG, UK. rosalind.eggo06@.imperial.ac.uk
J R Soc Interface. 2011 Feb 6;8(55):233-43. doi: 10.1098/rsif.2010.0216. Epub 2010 Jun 23.
There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty.
人们对流感空间传播的关键决定因素仍知之甚少。1918 年的大流行提供了一个机会,可以大规模阐明传播的空间决定因素。为了更好地描述 1918 年主要流感波的传播情况,我们根据英格兰和威尔士的 246 个人口中心和美国的 47 个城市收集的死亡率数据,拟合了一系列城市间传播模型。我们使用城市间接触的引力模型,探讨了人口规模和距离对疾病传播的影响,并检验了城市间连接的密度依赖性假设。我们采用贝叶斯马尔可夫链蒙特卡罗方法来估计模型的人口、传染性、距离和密度依赖性参数。我们推断了这两个国家最有可能的传播树。对于英格兰和威尔士,通过偏差信息标准比较,估计城市间连接密度依赖性程度的模型更可取。在主要流感波的早期,长距离感染性相互作用占主导地位,随着疫情的蔓延,本地感染事件更有可能发生。对于美国来说,由于城市数量较少且分布更广,估计人口规模依赖性或密度依赖性程度的统计能力不足,首选模型仅取决于距离。我们发现,从英格兰和威尔士数据集估计的参数可以应用于美国数据,而不会有似然惩罚。