Suppr超能文献

严重急性呼吸综合征冠状病毒刺突糖蛋白上的一个单一的天冬酰胺连接的糖基化位点通过多种机制促进甘露糖结合凝集素的抑制作用。

A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms.

机构信息

Blood Systems Research Institute and Department of Laboratory Medicine, University of California, San Francisco, California 94118, USA.

出版信息

J Virol. 2010 Sep;84(17):8753-64. doi: 10.1128/JVI.00554-10. Epub 2010 Jun 23.

Abstract

Mannose-binding lectin (MBL) is a serum protein that plays an important role in host defenses as an opsonin and through activation of the complement system. The objective of this study was to assess the interactions between MBL and severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein (SARS-S). MBL was found to selectively bind to retroviral particles pseudotyped with SARS-S. Unlike several other viral envelopes to which MBL can bind, both recombinant and plasma-derived human MBL directly inhibited SARS-S-mediated viral infection. Moreover, the interaction between MBL and SARS-S blocked viral binding to the C-type lectin, DC-SIGN. Mutagenesis indicated that a single N-linked glycosylation site, N330, was critical for the specific interactions between MBL and SARS-S. Despite the proximity of N330 to the receptor-binding motif of SARS-S, MBL did not affect interactions with the ACE2 receptor or cathepsin L-mediated activation of SARS-S-driven membrane fusion. Thus, binding of MBL to SARS-S may interfere with other early pre- or postreceptor-binding events necessary for efficient viral entry.

摘要

甘露糖结合凝集素(MBL)是一种血清蛋白,作为调理素和通过补体系统的激活在宿主防御中发挥重要作用。本研究的目的是评估 MBL 与严重急性呼吸综合征冠状病毒(SARS-CoV)刺突(S)糖蛋白(SARS-S)之间的相互作用。发现 MBL 选择性结合用 SARS-S 假型化的逆转录病毒颗粒。与 MBL 可以结合的几种其他病毒包膜不同,重组和血浆来源的人 MBL 直接抑制 SARS-S 介导的病毒感染。此外,MBL 和 SARS-S 之间的相互作用阻断了病毒与 C 型凝集素 DC-SIGN 的结合。突变分析表明,一个单一的 N 连接糖基化位点 N330 对于 MBL 和 SARS-S 之间的特异性相互作用至关重要。尽管 N330 靠近 SARS-S 的受体结合基序,但 MBL 不影响与 ACE2 受体的相互作用或组织蛋白酶 L 介导的 SARS-S 驱动的膜融合的激活。因此,MBL 与 SARS-S 的结合可能会干扰其他对有效病毒进入至关重要的早期受体结合前或受体结合后事件。

相似文献

6
Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry.
Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5. doi: 10.1073/pnas.0306446101. Epub 2004 Mar 9.
9
Structure of SARS coronavirus spike receptor-binding domain complexed with receptor.
Science. 2005 Sep 16;309(5742):1864-8. doi: 10.1126/science.1116480.

引用本文的文献

2
Is COVID-19 Coagulopathy a Thrombotic Microangiopathy? A Prospective, Observational Study.
Int J Mol Sci. 2025 Jun 4;26(11):5395. doi: 10.3390/ijms26115395.
4
Enhanced complement activation and MAC formation accelerates severe COVID-19.
Cell Mol Life Sci. 2024 Sep 16;81(1):405. doi: 10.1007/s00018-024-05430-w.
5
Revisiting the interaction between complement lectin pathway protease MASP-2 and SARS-CoV-2 nucleoprotein.
Front Immunol. 2024 Jun 7;15:1419165. doi: 10.3389/fimmu.2024.1419165. eCollection 2024.
6
Mass Spectrometry Analysis of SARS-CoV-2 Nucleocapsid Protein Reveals Camouflaging Glycans and Unique Post-Translational Modifications.
Infect Microbes Dis. 2021 Aug 3;3(3):149-157. doi: 10.1097/IM9.0000000000000071. eCollection 2021 Sep.
7
Human surfactant protein A inhibits SARS-CoV-2 infectivity and alleviates lung injury in a mouse infection model.
Front Immunol. 2024 Mar 26;15:1370511. doi: 10.3389/fimmu.2024.1370511. eCollection 2024.
8
Emerging role of complement in COVID-19 and other respiratory virus diseases.
Cell Mol Life Sci. 2024 Feb 18;81(1):94. doi: 10.1007/s00018-024-05157-8.
9
High production polymorphisms protect against COVID-19 complications in critically ill patients: A retrospective cohort study.
Heliyon. 2023 Dec 13;10(1):e23670. doi: 10.1016/j.heliyon.2023.e23670. eCollection 2024 Jan 15.
10
The complement cascade in lung injury and disease.
Respir Res. 2024 Jan 4;25(1):20. doi: 10.1186/s12931-023-02657-2.

本文引用的文献

1
Mannose-binding lectin deficiency and respiratory tract infection.
J Innate Immun. 2010;2(2):114-22. doi: 10.1159/000228159. Epub 2009 Jul 7.
2
Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein.
Virology. 2010 Apr 10;399(2):257-69. doi: 10.1016/j.virol.2009.12.020. Epub 2010 Feb 2.
3
Pathogen recognition by DC-SIGN shapes adaptive immunity.
Future Microbiol. 2009 Sep;4(7):879-90. doi: 10.2217/fmb.09.51.
5
Mannose-binding lectin is present in the infected airway: a possible pulmonary defence mechanism.
Thorax. 2009 Feb;64(2):150-5. doi: 10.1136/thx.2008.100073. Epub 2008 Nov 6.
7
Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity.
Biochem Biophys Res Commun. 2007 Jul 20;359(1):174-9. doi: 10.1016/j.bbrc.2007.05.092. Epub 2007 May 22.
8
The SARS coronavirus spike glycoprotein is selectively recognized by lung surfactant protein D and activates macrophages.
Immunobiology. 2007;212(3):201-11. doi: 10.1016/j.imbio.2006.12.001. Epub 2007 Jan 26.
9
Mannan binding lectin and viral hepatitis.
Immunol Lett. 2007 Jan 15;108(1):34-44. doi: 10.1016/j.imlet.2006.10.006. Epub 2006 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验