Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones, Científicas y Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
J Neurosci. 2010 Jun 23;30(25):8660-70. doi: 10.1523/JNEUROSCI.1962-10.2010.
Neuronal migration is a complex process requiring the coordinated interaction of cytoskeletal components and regulated by calcium signaling among other factors. Migratory neurons are polarized cells in which the largest intracellular organelle, the nucleus, has to move repeatedly. Current views support a central role for pulling forces that drive nuclear movement. The participation of actomyosin driven forces acting at the nucleus rear has been suggested, however its precise contribution has not been directly addressed. By analyzing interneurons migrating in cortical slices of mouse brains, we have found that nucleokinesis is associated with a precise pattern of actin dynamics characterized by the initial formation of a cup-like actin structure at the rear nuclear pole. Time-lapse experiments show that progressive actomyosin contraction drives the nucleus forward. Nucleokinesis concludes with the complete contraction of the cup-like structure, resulting in an actin spot at the base of the retracting trailing process. Our results demonstrate that this actin remodeling requires a threshold calcium level provided by low-frequency spontaneous fast intracellular calcium transients. Microtubule stabilization with taxol treatment prevents actin remodeling and nucleokinesis, whereas cells with a collapsed microtubule cytoskeleton induced by nocodazole treatment, display nearly normal actin dynamics and nucleokinesis. In summary, the results presented here demonstrate that actomyosin forces acting at the rear side of the nucleus drives nucleokinesis in tangentially migrating interneurons in a process that requires calcium and a dynamic cytoskeleton of microtubules.
神经元迁移是一个复杂的过程,需要细胞骨架成分的协调相互作用,并受钙信号等因素的调节。迁移神经元是极化细胞,其中最大的细胞内细胞器——细胞核必须反复移动。目前的观点支持拉力在驱动核运动中起核心作用。已经提出了肌动球蛋白驱动的力作用于核后部的参与,但其确切贡献尚未直接解决。通过分析在小鼠大脑皮质切片中迁移的中间神经元,我们发现核迁移与肌动蛋白动力学的精确模式相关联,其特征在于在后核极处最初形成杯状肌动蛋白结构。延时实验表明,渐进的肌动球蛋白收缩驱动核向前移动。核迁移以杯状结构的完全收缩结束,导致缩回的尾随过程底部的肌动蛋白斑点。我们的结果表明,这种肌动蛋白重塑需要由低频自发快速细胞内钙瞬变提供的阈值钙水平。用紫杉醇处理稳定微管会阻止肌动蛋白重塑和核迁移,而用诺考达唑处理诱导微管细胞骨架崩溃的细胞几乎显示正常的肌动蛋白动力学和核迁移。总之,这里呈现的结果表明,核后部的肌动球蛋白力驱动在切向迁移的中间神经元中的核迁移,这是一个需要钙和动态微管细胞骨架的过程。