Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA.
J Phys Chem B. 2010 Jul 22;114(28):9289-99. doi: 10.1021/jp103403p.
Employing electron spin resonance (ESR) spectroscopy, we have characterized the radicals formed in 3'-azido-3'-deoxythymidine (3'-AZT) and in its 5'-analog 5'-azido-5'-deoxythymidine (5'-AZT) after electron attachment in gamma-irradiated aqueous (H(2)O or D(2)O) glassy (7.5 M LiCl) systems. ESR spectral studies and theoretical calculations show that the predominant site of electron capture in 3'-AZT and in 5'-AZT is at the azide group and not at the thymine moiety. The azide group in AZT is therefore more electron affinic than the most electron affinic DNA base, thymine. Electron attachment to 3'-AZT and 5'-AZT results in an unstable azide anion radical intermediate (RN(3)(-)) that is too short-lived to be observed in our work even at 77 K. At 77 K, we observe the neutral aminyl radical (RNH) after loss of N(2) from RN(3)(-) followed by protonation of nitrene anion radical (RN(-)) to give RNH*. The expected RN*(-) intermediate is not observed as protonation from water is complete at 77 K even under highly basic conditions. Formation of RND* in D(2)O solutions confirms water as the source of the NH proton in the RNH*. Our assignments to these radicals are aided by DFT calculations for hyperfine coupling constants that closely match the experimental values. On annealing to higher temperatures (ca. 160-170 K), RNH* undergoes bimolecular hydrogen abstraction reactions from the thymine methyl group and the sugar moiety resulting in the formation of the thymine allyl radical (UCH(2)) and two sugar radicals, C3' and C5'. RNH also results in one-electron oxidation of the guanine base in 3'-AZG. This work provides a potential mechanism for the reported radiosensitization effects of AZT.
我们利用电子自旋共振(ESR)光谱技术,研究了在γ辐照的水玻璃(7.5 M LiCl)系统中,3'-叠氮-3'-脱氧胸苷(3'-AZT)及其 5'-类似物 5'-叠氮-5'-脱氧胸苷(5'-AZT)在电子附着后的自由基形成。ESR 光谱研究和理论计算表明,在 3'-AZT 和 5'-AZT 中,电子捕获的主要部位是叠氮基团,而不是胸腺嘧啶部分。因此,AZT 的叠氮基团比最具电子亲和性的 DNA 碱基胸腺嘧啶更具电子亲合性。电子附着到 3'-AZT 和 5'-AZT 上会产生不稳定的叠氮阴离子自由基中间体(RN(3)(-)),即使在 77 K 下,我们也无法观察到其短暂存在。在 77 K 下,我们观察到中性氨基自由基(RNH),这是从 RN(3)(-)失去 N(2)后产生的,然后是氮烯阴离子自由基(RN(-))的质子化反应,得到 RNH*。由于即使在高度碱性条件下,77 K 时水的质子化反应也完全进行,因此我们没有观察到预期的 RN*(-)中间体。在 D(2)O 溶液中形成 RND证实了水是 RNH中 NH 质子的来源。我们对这些自由基的分配得到了 DFT 计算的超精细耦合常数的帮助,这些常数与实验值非常吻合。在较高温度(约 160-170 K)下退火时,RNH会从胸腺嘧啶甲基和糖部分发生双分子氢提取反应,形成胸腺嘧啶烯丙基自由基(UCH(2))和两个糖自由基 C3'和 C5'。RNH*还导致 3'-AZG 中鸟嘌呤碱基的单电子氧化。这项工作为 AZT 报道的放射增敏效应提供了一种潜在的机制。