Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235-1822, USA.
Nature. 2010 Jun 24;465(7301):1027-32. doi: 10.1038/nature09125.
The amide bond is one of nature's most common functional and structural elements, as the backbones of all natural peptides and proteins are composed of amide bonds. Amides are also present in many therapeutic small molecules. The construction of amide bonds using available methods relies principally on dehydrative approaches, although oxidative and radical-based methods are representative alternatives. In nearly every example, carbon and nitrogen bear electrophilic and nucleophilic character, respectively, during the carbon-nitrogen bond-forming step. Here we show that activation of amines and nitroalkanes with an electrophilic iodine source can lead directly to amide products. Preliminary observations support a mechanism in which the polarities of the two reactants are reversed (German, umpolung) during carbon-nitrogen bond formation relative to traditional approaches. The use of nitroalkanes as acyl anion equivalents provides a conceptually innovative approach to amide and peptide synthesis, and one that might ultimately provide for efficient peptide synthesis that is fully reliant on enantioselective methods.
酰胺键是自然界最常见的功能和结构单元之一,因为所有天然肽和蛋白质的骨架都是由酰胺键组成的。酰胺键也存在于许多治疗性小分子中。使用现有方法构建酰胺键主要依赖于脱水方法,尽管氧化和自由基方法是代表性的替代方法。在几乎所有的例子中,在碳-氮键形成步骤中,碳和氮分别具有亲电和亲核性质。在这里,我们表明,用亲电碘源激活胺和硝基烷烃可以直接得到酰胺产物。初步观察结果支持这样一种机制,即在相对于传统方法的碳-氮键形成过程中,两个反应物的极性发生反转(德语,umpolung)。硝基烷烃作为酰基阴离子等价物的使用为酰胺和肽合成提供了一种概念创新的方法,并且最终可能为完全依赖对映选择性方法的有效肽合成提供了可能。