Pfingst Bryan E, Burkholder-Juhasz Rose A, Zwolan Teresa A, Xu Li
Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan Health System, Ann Arbor, MI 48109-5506, USA.
Hear Res. 2008 Aug;242(1-2):172-83. doi: 10.1016/j.heares.2007.11.007. Epub 2007 Nov 28.
Auditory prostheses use implanted electrode arrays that permit stimulation at many sites along the tonotopic axis of auditory neurons. Psychophysical studies demonstrate that measures of implant function, such as detection and discrimination thresholds, vary considerably across these sites, that the across-site patterns of these measures differ across subjects, and that the likely mechanisms underlying this variability differ across measures. Psychophysical and speech recognition studies suggest that not all stimulation sites contribute equally to perception with the prosthesis and that some sites might have negative effects on perception. Studies that reduce the number of active stimulation sites indicate that most cochlear implant users can effectively utilize a maximum of only about seven sites in their processors. These findings support a strategy for improving implant performance by selecting only the best stimulation sites for the processor map. Another approach is to revise stimulation parameters for ineffective sites in an effort to improve acuity at those sites. In this paper, we discuss data supporting these approaches and some potential pitfalls.
听觉假体使用植入式电极阵列,该阵列允许在沿听觉神经元音调拓扑轴的多个部位进行刺激。心理物理学研究表明,植入功能的测量指标,如检测阈值和辨别阈值,在这些部位之间差异很大,这些测量指标的跨部位模式在不同受试者之间也不同,而且这种变异性背后的潜在机制在不同测量指标之间也不同。心理物理学和语音识别研究表明,并非所有刺激部位对假体感知的贡献都相同,而且有些部位可能对感知有负面影响。减少有效刺激部位数量的研究表明,大多数人工耳蜗使用者在其处理器中最多只能有效利用大约七个部位。这些发现支持了一种通过为处理器图谱仅选择最佳刺激部位来提高植入性能的策略。另一种方法是修改无效部位的刺激参数,以努力提高这些部位的敏锐度。在本文中,我们讨论了支持这些方法的数据以及一些潜在的陷阱。