Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
J Am Chem Soc. 2010 Jul 28;132(29):9979-81. doi: 10.1021/ja1038787.
Slow micros/ms dynamics involved in protein folding, binding, catalysis, and allostery are currently detected using NMR dispersion experiments such as CPMG (Carr-Purcell-Meiboom-Gill) or spin-lock R(1rho). In these methods, protein dynamics are obtained by analyzing relaxation dispersion curves obtained from either changing the time spacing between 180 degree pulses or by changing the effective spin-locking field strength. In this Communication, we introduce a new method to induce a dispersion of relaxation rates. Our approach relies on altering the shape of the adiabatic full passage pulse and is conceptually different from existing approaches. By changing the nature of the adiabatic radiofrequency irradiation, we are able to obtain rotating frame R(1rho) and R(2rho) dispersion curves that are sensitive to slow micros/ms protein dynamics (demonstrated with ubiquitin). The strengths of this method are to (a) extend the dynamic range of the relaxation dispersion analysis, (b) avoid the need for multiple magnetic field strengths to extract dynamic parameters, (c) measure accurate relaxation rates that are independent of frequency offset, and (d) reduce the stress to NMR hardware (e.g., cryoprobes).
目前,用于检测蛋白质折叠、结合、催化和变构等过程中涉及的缓慢微秒/毫秒动力学的方法是使用 NMR 弥散实验,如 CPMG(Carr-Purcell-Meiboom-Gill)或自旋锁定 R(1rho)。在这些方法中,通过分析从改变 180 度脉冲之间的时间间隔或改变有效自旋锁定场强获得的弛豫弥散曲线来获得蛋白质动力学。在本通讯中,我们介绍了一种诱导弛豫速率弥散的新方法。我们的方法依赖于改变绝热全通过脉冲的形状,与现有方法在概念上不同。通过改变绝热射频辐射的性质,我们能够获得旋转框架 R(1rho)和 R(2rho)弥散曲线,这些曲线对缓慢的微秒/毫秒蛋白质动力学敏感(用泛素进行了证明)。该方法的优点是:(a) 扩展弛豫弥散分析的动态范围,(b) 避免使用多个磁场强度来提取动态参数,(c) 测量与频率偏移无关的准确弛豫率,以及 (d) 降低对 NMR 硬件(例如,低温探头)的压力。