Suppr超能文献

磷酸化一种新型细胞骨架蛋白(RsmP)调节谷氨酸棒杆菌的杆状形态。

Phosphorylation of a novel cytoskeletal protein (RsmP) regulates rod-shaped morphology in Corynebacterium glutamicum.

机构信息

Departamento de Biología Molecular, Area de Microbiología, Facultad de Biología, Universidad de León, León 24071, Spain.

出版信息

J Biol Chem. 2010 Sep 17;285(38):29387-97. doi: 10.1074/jbc.M110.154427. Epub 2010 Jul 9.

Abstract

Corynebacteria grow by wall extension at the cell poles, with DivIVA being an essential protein orchestrating cell elongation and morphogenesis. DivIVA is considered a scaffolding protein able to recruit other proteins and enzymes involved in polar peptidoglycan biosynthesis. Partial depletion of DivIVA induced overexpression of cg3264, a previously uncharacterized gene that encodes a novel coiled coil-rich protein specific for corynebacteria and a few other actinomycetes. By partial depletion and overexpression of Cg3264, we demonstrated that this protein is an essential cytoskeletal element needed for maintenance of the rod-shaped morphology of Corynebacterium glutamicum, and it was therefore renamed RsmP (rod-shaped morphology protein). RsmP forms long polymers in vitro in the absence of any cofactors, thus resembling eukaryotic intermediate filaments. We also investigated whether RsmP could be regulated post-translationally by phosphorylation, like eukaryotic intermediate filaments. RsmP was phosphorylated in vitro by the PknA protein kinase and to a lesser extent by PknL. A mass spectrometric analysis indicated that phosphorylation exclusively occurred on a serine (Ser-6) and two threonine (Thr-168 and Thr-211) residues. We confirmed that mutagenesis to alanine (phosphoablative protein) totally abolished PknA-dependent phosphorylation of RsmP. Interestingly, when the three residues were converted to aspartic acid, the phosphomimetic protein accumulated at the cell poles instead of making filaments along the cell, as observed for the native or phosphoablative RsmP proteins, indicating that phosphorylation of RsmP is necessary for directing cell growth at the cell poles.

摘要

棒杆菌通过在细胞极处进行细胞壁延伸来生长,而 DivIVA 是一种必不可少的蛋白质,可协调细胞伸长和形态发生。DivIVA 被认为是一种支架蛋白,能够招募其他参与极肽聚糖生物合成的蛋白质和酶。DivIVA 的部分耗尽会诱导 cg3264 的过度表达,cg3264 是一个以前未被表征的基因,编码一种新型富含卷曲螺旋的蛋白质,该蛋白质特异性存在于棒杆菌和少数其他放线菌中。通过 Cg3264 的部分耗尽和过表达,我们证明该蛋白是维持谷氨酸棒杆菌杆状形态所必需的细胞骨架元素,因此将其重新命名为 RsmP(杆状形态蛋白)。RsmP 在没有任何辅助因子的情况下在体外形成长聚合物,因此类似于真核中间丝。我们还研究了 RsmP 是否可以像真核中间丝一样通过磷酸化进行翻译后调节。RsmP 在体外可被 PknA 蛋白激酶和在较小程度上被 PknL 磷酸化。质谱分析表明,磷酸化仅发生在一个丝氨酸(Ser-6)和两个苏氨酸(Thr-168 和 Thr-211)残基上。我们证实,突变为丙氨酸(磷酸化失活蛋白)完全消除了 RsmP 对 PknA 依赖性磷酸化。有趣的是,当这三个残基被转化为天冬氨酸时,磷酸模拟蛋白积累在细胞极处,而不是像天然或磷酸化失活的 RsmP 蛋白那样沿细胞形成纤维,表明 RsmP 的磷酸化对于指导细胞在细胞极处生长是必需的。

相似文献

引用本文的文献

1
Tip extension and simultaneous multiple fission in a filamentous bacterium.丝状细菌的顶体延伸和同时的多重裂变。
Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2408654121. doi: 10.1073/pnas.2408654121. Epub 2024 Sep 3.
4
Driving polar growth.驱动极性生长。
Elife. 2020 May 7;9:e57043. doi: 10.7554/eLife.57043.
6
¡vIVA la DivIVA!万岁,迪维瓦!
J Bacteriol. 2019 Oct 4;201(21). doi: 10.1128/JB.00245-19. Print 2019 Nov 1.
7
Prokaryotic cytoskeletons: protein filaments organizing small cells.原核细胞骨架:组织小型细胞的蛋白质丝。
Nat Rev Microbiol. 2018 Apr;16(4):187-201. doi: 10.1038/nrmicro.2017.153. Epub 2018 Jan 22.
9
Penicillin-binding proteins in Actinobacteria.放线菌中的青霉素结合蛋白
J Antibiot (Tokyo). 2015 Apr;68(4):223-45. doi: 10.1038/ja.2014.148. Epub 2014 Oct 29.

本文引用的文献

6
Dynamics of bacterial cytoskeletal elements.细菌细胞骨架元件的动力学
Cell Motil Cytoskeleton. 2009 Nov;66(11):909-14. doi: 10.1002/cm.20381.
8
Assembly of the MreB-associated cytoskeletal ring of Escherichia coli.大肠杆菌中与MreB相关的细胞骨架环的组装。
Mol Microbiol. 2009 Apr;72(1):170-82. doi: 10.1111/j.1365-2958.2009.06632.x. Epub 2009 Feb 11.
9
BolA inhibits cell elongation and regulates MreB expression levels.BolA抑制细胞伸长并调节MreB表达水平。
J Mol Biol. 2009 Feb 6;385(5):1345-51. doi: 10.1016/j.jmb.2008.12.026. Epub 2008 Dec 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验