Suppr超能文献

中间丝样细胞骨架的动态梯度在顶端生长过程中被极性标志物募集。

Dynamic gradients of an intermediate filament-like cytoskeleton are recruited by a polarity landmark during apical growth.

机构信息

Department of Biology, Lund University, 22362 Lund, Sweden.

出版信息

Proc Natl Acad Sci U S A. 2013 May 21;110(21):E1889-97. doi: 10.1073/pnas.1305358110. Epub 2013 May 2.

Abstract

Intermediate filament (IF)-like cytoskeleton emerges as a versatile tool for cellular organization in all kingdoms of life, underscoring the importance of mechanistically understanding its diverse manifestations. We showed previously that, in Streptomyces (a bacterium with a mycelial lifestyle similar to that of filamentous fungi, including extreme cell and growth polarity), the IF protein FilP confers rigidity to the hyphae by an unknown mechanism. Here, we provide a possible explanation for the IF-like function of FilP by demonstrating its ability to self-assemble into a cis-interconnected regular network in vitro and its localization into structures consistent with a cytoskeletal network in vivo. Furthermore, we reveal that a spatially restricted interaction between FilP and DivIVA, the main component of the Streptomyces polarisome complex, leads to formation of apical gradients of FilP in hyphae undergoing active tip extension. We propose that the coupling between the mechanism driving polar growth and the assembly of an IF cytoskeleton provides each new hypha with an additional stress-bearing structure at its tip, where the nascent cell wall is inevitably more flexible and compliant while it is being assembled and matured. Our data suggest that recruitment of cytoskeleton around a cell polarity landmark is a broadly conserved strategy in tip-growing cells.

摘要

中间丝(IF)样细胞骨架在所有生命领域的细胞组织中都成为一种通用的工具,这突显了从机械角度理解其多样化表现的重要性。我们之前曾表明,在链霉菌(一种菌丝体生活方式类似于丝状真菌的细菌,包括极端的细胞和生长极性)中,IF 蛋白 FilP 通过未知的机制赋予菌丝刚性。在这里,我们通过证明 FilP 能够在体外自我组装成顺式相互连接的规则网络及其在体内定位到与细胞骨架网络一致的结构,为 FilP 的 IF 样功能提供了一个可能的解释。此外,我们揭示了 FilP 与 DivIVA 之间空间受限的相互作用,DivIVA 是链霉菌极性体复合物的主要成分,导致在活跃尖端延伸的菌丝中形成 FilP 的顶端梯度。我们提出,驱动极性生长的机制与 IF 细胞骨架的组装之间的偶联为每个新的菌丝体在其尖端提供了另一个承载应力的结构,在那里新的细胞壁在组装和成熟过程中不可避免地更加灵活和顺应。我们的数据表明,在尖端生长的细胞中,围绕细胞极性标志招募细胞骨架是一种广泛保守的策略。

相似文献

1
Dynamic gradients of an intermediate filament-like cytoskeleton are recruited by a polarity landmark during apical growth.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):E1889-97. doi: 10.1073/pnas.1305358110. Epub 2013 May 2.
2
Coiled coil cytoskeletons collaborate in polar growth of Streptomyces.
Bioarchitecture. 2013 Jul-Aug;3(4):110-2. doi: 10.4161/bioa.26194.
4
Assembly mechanisms of the bacterial cytoskeletal protein FilP.
Life Sci Alliance. 2019 Jun 26;2(3). doi: 10.26508/lsa.201800290. Print 2019 Jun.
5
Coiled-coil protein Scy is a key component of a multiprotein assembly controlling polarized growth in Streptomyces.
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):E397-406. doi: 10.1073/pnas.1210657110. Epub 2013 Jan 7.
6
The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces.
Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):E2371-9. doi: 10.1073/pnas.1207409109. Epub 2012 Aug 6.
7
Calcium and Sodium-mediated Dynamic Assembly of Intermediate Filament-like Protein FilP.
Protein Pept Lett. 2023;30(2):154-161. doi: 10.2174/0929866530666221209120300.
8
Domains involved in the in vivo function and oligomerization of apical growth determinant DivIVA in Streptomyces coelicolor.
FEMS Microbiol Lett. 2009 Aug;297(1):101-9. doi: 10.1111/j.1574-6968.2009.01678.x. Epub 2009 Jun 5.
9
Cell-Biological Studies of Osmotic Shock Response in Streptomyces spp.
J Bacteriol. 2016 Dec 13;199(1). doi: 10.1128/JB.00465-16. Print 2017 Jan 1.

引用本文的文献

1
Engineering bacterial cell morphology for the design of robust cell factories.
Biochem Biophys Rep. 2025 Jun 7;43:102076. doi: 10.1016/j.bbrep.2025.102076. eCollection 2025 Sep.
3
Tip extension and simultaneous multiple fission in a filamentous bacterium.
Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2408654121. doi: 10.1073/pnas.2408654121. Epub 2024 Sep 3.
5
Interacting bactofilins impact cell shape of the MreB-less multicellular Rhodomicrobium vannielii.
PLoS Genet. 2023 May 31;19(5):e1010788. doi: 10.1371/journal.pgen.1010788. eCollection 2023 May.
7
8
Ultrastructure of Exospore Formation in Revealed by Cryo-Electron Tomography.
Front Microbiol. 2020 Sep 24;11:581135. doi: 10.3389/fmicb.2020.581135. eCollection 2020.
9
Compaction and control-the role of chromosome-organizing proteins in Streptomyces.
FEMS Microbiol Rev. 2020 Nov 24;44(6):725-739. doi: 10.1093/femsre/fuaa028.
10
Identification and characterization of novel filament-forming proteins in cyanobacteria.
Sci Rep. 2020 Feb 5;10(1):1894. doi: 10.1038/s41598-020-58726-9.

本文引用的文献

1
Coiled-coil protein Scy is a key component of a multiprotein assembly controlling polarized growth in Streptomyces.
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):E397-406. doi: 10.1073/pnas.1210657110. Epub 2013 Jan 7.
2
The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces.
Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):E2371-9. doi: 10.1073/pnas.1207409109. Epub 2012 Aug 6.
3
Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere?
Mol Microbiol. 2012 Aug;85(3):393-404. doi: 10.1111/j.1365-2958.2012.08107.x. Epub 2012 Jun 11.
4
Mechanistic basis of branch-site selection in filamentous bacteria.
PLoS Comput Biol. 2012;8(3):e1002423. doi: 10.1371/journal.pcbi.1002423. Epub 2012 Mar 8.
5
Signals and regulators that govern Streptomyces development.
FEMS Microbiol Rev. 2012 Jan;36(1):206-31. doi: 10.1111/j.1574-6976.2011.00317.x. Epub 2011 Dec 2.
7
The nucleoskeleton as a genome-associated dynamic 'network of networks'.
Nat Rev Mol Cell Biol. 2011 Oct 5;12(11):695-708. doi: 10.1038/nrm3207.
9
The regulation of the secondary metabolism of Streptomyces: new links and experimental advances.
Nat Prod Rep. 2011 Jul;28(7):1311-33. doi: 10.1039/c1np00003a. Epub 2011 May 25.
10
The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function.
Cytoskeleton (Hoboken). 2011 Apr;68(4):205-19. doi: 10.1002/cm.20505. Epub 2011 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验