Suppr超能文献

纳米医学:磁性纳米颗粒及其生物医学应用。

Nanomedicine: magnetic nanoparticles and their biomedical applications.

机构信息

Nanobioengineering/Bioelectronics Lab Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA.

出版信息

Curr Med Chem. 2010;17(27):3120-41. doi: 10.2174/092986710791959765.

Abstract

During this past decade, science and engineering have seen a rapid increase in interest for nanoscale materials with dimensions less than 100 nm, which lie in the intermediate state between atoms and bulk (solid) materials. Their attributes are significantly altered relative to the corresponding bulk materials as they exhibit size dependent behavior such as quantum size effects (depending on bulk Bohr radius), optical absorption and emission, coulomb staircase behavior (electrical transport), superparamagnetism and various unique properties. They are active components of ferrofluids, recording tape, flexible disk recording media along with potential future applications in spintronics: a new paradigm of electronics utilizing intrinsic charge and spin of electrons for ultra-high-density data storage and quantum computing. They are used in a gamut of biomedical applications: bioseparation of biological entities, therapeutic drugs and gene delivery, radiofrequency-induced destruction of cells and tumors (hyperthermia), and contrast-enhancement agents for magnetic resonance imaging (MRI). The magnetic nanoparticles have optimizable, controllable sizes enabling their comparison to cells (10-100 µm), viruses (20-250 nm), proteins (3-50 nm), and genes (10-100 nm). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) provide necessary characterization methods that enable accurate structural and functional analysis of interaction of the biofunctional particles with the target bioentities. The goal of the present discussion is to provide a broad review of magnetic nanoparticle research with a special focus on the synthesis, functionalization and medical applications of these particles, which have been carried out during the past decade, and to examine several prospective directions.

摘要

在过去的十年中,科学和工程领域对尺寸小于 100nm 的纳米级材料产生了浓厚的兴趣,这些材料处于原子和块状(固体)材料之间的中间状态。与相应的块状材料相比,它们的特性发生了显著变化,因为它们表现出尺寸依赖性行为,例如量子尺寸效应(取决于块状玻尔半径)、光学吸收和发射、库仑阶梯行为(电传输)、超顺磁性和各种独特的性质。它们是铁磁流体、记录磁带、软盘记录介质的活性成分,以及未来在自旋电子学中的潜在应用:一种利用电子的固有电荷和自旋进行超高密度数据存储和量子计算的电子学新范例。它们在一系列生物医学应用中得到了应用:生物实体的生物分离、治疗药物和基因传递、射频诱导的细胞和肿瘤破坏(热疗)以及磁共振成像(MRI)的对比增强剂。磁性纳米粒子具有可优化、可控的尺寸,使其能够与细胞(10-100µm)、病毒(20-250nm)、蛋白质(3-50nm)和基因(10-100nm)进行比较。扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)和 X 射线光电子能谱(XPS)提供了必要的表征方法,能够对生物功能颗粒与目标生物实体相互作用的结构和功能进行准确分析。本讨论的目的是对磁性纳米粒子研究进行广泛的综述,特别关注这些粒子的合成、功能化和医学应用,这些研究在过去十年中已经进行,并探讨了几个有前景的方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验