Behavioural Neuroscience and Biomolecular Science Programs, Biophysics Section, Laurentian University, Sudbury, Ontario P3E 2C6, Canada.
Curr Med Chem. 2010;17(27):3094-8. doi: 10.2174/092986710791959701.
The myriads of molecular pathways that have been measured to understand the physical bases of neuronal and other cellular functions have exceeded classical comprehension. In the tradition of Bohr and Schrodinger, the hypothesis is developed that molecular pathways are simply epiphenomenal transports of quanta with increments in the order of 10(-20) J. Experimental measurements of photon emissions from cell cultures and the serial steps of phosphorylation in general molecular pathways and transformations in chromophores supported this contention. This discrete value is also associated with action potentials, intersynaptic events, the biophysical bases of membrane potentials, the numbers of action potentials per cell from magnetic energy potential, and the interionic distances around membranes. Consideration of information as discrete increments of energy may allow greater experimental control and external intervention of pathways relevant to medicinal chemistry.
为了理解神经元和其他细胞功能的物理基础,人们已经测量了无数的分子途径,这些途径已经超出了经典的理解范围。在玻尔和薛定谔的传统中,提出了这样的假设:分子途径只是量子的伴随现象,其增量为 10(-20) J。对细胞培养物中光子发射的实验测量以及一般分子途径中的磷酸化的连续步骤和发色团的转化支持了这一论点。这个离散值也与动作电位、突触间事件、膜电位的生物物理基础、从磁能势来看每个细胞的动作电位数量以及膜周围的离子间距离有关。将信息视为离散的能量增量,可以更好地控制实验并对与药物化学相关的途径进行外部干预。