Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA.
Free Radic Biol Med. 2010 Sep 1;49(5):757-69. doi: 10.1016/j.freeradbiomed.2010.05.032. Epub 2010 Jun 8.
Nitric oxide (NO) and related reactive nitrogen species (RNS) play a major role in the pathophysiology of stroke and other neurodegenerative diseases. One of the poorly understood consequences of stroke is a long-lasting inhibition of synaptic transmission. In this study, we tested the hypothesis that RNS can produce long-term inhibition of neurotransmitter release via S-nitrosylation of proteins in presynaptic nerve endings. We examined the effects of exogenous sources of RNS on the vesicular and nonvesicular L-[(3)H]glutamate release from rat brain synaptosomes. NO/RNS donors, such as spermine NONOate, MAHMA NONOate, S-nitroso-L-cysteine, and SIN-1, inhibited only the vesicular component of glutamate release with an order of potency that closely matched levels of protein S-nitrosylation. Inhibition of glutamate release persisted for >1h after RNS donor decomposition and washout and strongly correlated with decreases in the intrasynaptosomal ATP levels. Post-NO treatment of synaptosomes with thiol-reducing reagents decreased the total content of S-nitrosylated proteins but had little effect on glutamate release and ATP levels. In contrast, post-NO application of the end-product of glycolysis, pyruvate, partially rescued neurotransmitter release and ATP production. These data suggest that RNS suppress presynaptic metabolism and neurotransmitter release via poorly reversible modifications of glycolytic and mitochondrial enzymes, one of which was identified as glyceraldehyde-3-phosphate dehydrogenase. A similar mechanism may contribute to the long-term suppression of neuronal communication during nitrosative stress in vivo.
一氧化氮(NO)和相关的活性氮物种(RNS)在中风和其他神经退行性疾病的病理生理学中起着重要作用。中风的一个尚未被充分了解的后果是突触传递的长期抑制。在这项研究中,我们测试了以下假设:RNS 可以通过突触前神经末梢蛋白质的 S-亚硝基化来产生对神经递质释放的长期抑制。我们研究了外源性 RNS 对大鼠脑突触小体中 L-[(3)H]谷氨酸囊泡和非囊泡释放的影响。NO/RNS 供体,如 spermine NONOate、MAHMA NONOate、S-亚硝基-L-半胱氨酸和 SIN-1,仅抑制谷氨酸释放的囊泡成分,其效力顺序与蛋白质 S-亚硝基化水平密切匹配。RNS 供体分解和冲洗后,谷氨酸释放的抑制作用持续>1 小时,并且与突触内三磷酸腺苷(ATP)水平的降低强烈相关。NO 处理突触小体后用巯基还原剂处理,可降低总 S-亚硝基化蛋白含量,但对谷氨酸释放和 ATP 水平影响不大。相比之下,糖酵解终产物丙酮酸的 NO 后应用部分挽救了神经递质释放和 ATP 的产生。这些数据表明,RNS 通过糖酵解和线粒体酶的不可逆修饰来抑制突触前代谢和神经递质释放,其中一种酶被鉴定为甘油醛-3-磷酸脱氢酶。在体内硝化应激过程中,类似的机制可能导致神经元通讯的长期抑制。