Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, Micro and Nanotechnology Laboratory, National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13620-5. doi: 10.1073/pnas.1003926107. Epub 2010 Jul 15.
An outstanding challenge in biomedical sciences is to devise a palette of molecular probes that can enable simultaneous and quantitative imaging of tens to hundreds of species down to ultralow concentrations. Addressing this need using surface-enhanced Raman scattering-based probes is potentially possible. Here, we theorize a rational design and optimization strategy to obtain reproducible probes using nanospheres with alternating metal and reporter-filled dielectric layers. The isolation of reporter molecules from metal surfaces suppresses chemical enhancement, and consequently signal enhancements are determined by electromagnetic effects alone. This strategy synergistically couples interstitial surface plasmons and permits the use of almost any molecule as a reporter by eliminating the need for surface attachment. Genetic algorithms are employed to optimize the layer dimensions to provide controllable enhancements exceeding 11 orders of magnitude and of single molecule sensitivity for nonresonant and resonant reporters, respectively. The strategy also provides several other opportunities, including a facile route to tuning the response of these structures to be spectrally flat and localization of the enhancement within a specific volume inside or outside the probe. The spectrally uniform enhancement for multiple excitation wavelengths and for different shifts enables generalized probes, whereas enhancement tuning permits a large dynamic range by suppression of enhancements from outside the probe. Combined, these theoretical calculations open the door for a set of reproducible and robust probes with controlled sensitivity for molecular sensing over a concentration range of over 20 orders of magnitude.
生物医学科学中的一个突出挑战是设计一组分子探针,使其能够同时对数十到数百种物质进行定量成像,浓度低至超痕量。使用基于表面增强拉曼散射的探针来满足这一需求是有可能的。在这里,我们提出了一种合理的设计和优化策略,使用具有交替金属和填充有报告分子的介电层的纳米球来获得可重现的探针。将报告分子与金属表面隔离会抑制化学增强,因此信号增强仅由电磁效应决定。这种策略协同结合了体表面等离激元和间隙表面等离激元,允许几乎任何分子用作报告分子,而无需表面附着。遗传算法被用来优化层的尺寸,以提供可控的增强,超过 11 个数量级,对于非共振和共振报告分子,分别提供单分子灵敏度。该策略还提供了其他几个机会,包括一种简便的方法来调整这些结构对光谱平坦的响应,并将增强定位在探针内部或外部的特定体积内。多个激发波长和不同位移的光谱均匀增强可实现通用探针,而增强调节可通过抑制探针外部的增强来实现大动态范围。这些理论计算为一组具有可重复和稳健性能的探针打开了大门,这些探针具有可控的灵敏度,可用于在 20 多个数量级的浓度范围内进行分子传感。