Siddhanta Soumik, Zheng Chao, Narayana Chandrabhas, Barman Ishan
Department of Mechanical Engineering , Johns Hopkins University , Baltimore , MD 21218 , USA . Email:
Light Scattering Laboratory , Chemistry & Physics of Materials Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur P.O. , Bangalore 560 064 , India.
Chem Sci. 2016 Jun 1;7(6):3730-3736. doi: 10.1039/c6sc00510a. Epub 2016 Feb 23.
Developing effective theranostic nanoplex platforms for personalized disease treatment necessitates an understanding of and the ability to control live cell-nanoparticle interactions. However, aggregation of nanoparticles on the cell surface and their subsequent internalization is sparsely understood and adversely impact cellular recognition and viability. Here we report a facile method of precisely modulating the aggregation and uptake for silver nanoparticles without altering their surface geometry or functionalization. Exploiting the stabilization properties of trehalose, our approach enables uptake of nanoparticles while reducing aggregation on cell surface and maintaining cell viability. Electron microscopy reveals the larger utilization of endosomal structures in the trehalose-rich environment compared to the nanoparticles' "free" cytosolic diffusion patterns in the control group. Additionally, in the presence of trehalose, plasmon-enhanced Raman spectroscopy confirms the preservation of the protein structure in the vicinity of the nanoparticles reinforcing the promise of the proposed route for label-free, multiplexed intracellular monitoring.
开发用于个性化疾病治疗的有效诊疗纳米复合物平台需要了解并能够控制活细胞与纳米颗粒之间的相互作用。然而,纳米颗粒在细胞表面的聚集及其随后的内化过程却鲜为人知,并且会对细胞识别和活力产生不利影响。在此,我们报告了一种简便的方法,可在不改变银纳米颗粒表面几何形状或功能化的情况下,精确调节其聚集和摄取。利用海藻糖的稳定特性,我们的方法能够实现纳米颗粒的摄取,同时减少其在细胞表面的聚集并维持细胞活力。电子显微镜显示,与对照组中纳米颗粒的“自由”胞质扩散模式相比,在富含海藻糖的环境中,内体结构的利用率更高。此外,在海藻糖存在的情况下,等离子体增强拉曼光谱证实了纳米颗粒附近蛋白质结构的保存,这增强了所提出的无标记、多重细胞内监测途径的前景。