Suppr超能文献

微流控技术在正电子发射断层扫描探针开发中的应用。

Microfluidics for positron emission tomography probe development.

机构信息

Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

出版信息

Mol Imaging. 2010 Aug;9(4):175-91.

Abstract

Owing to increased needs for positron emission tomography (PET), high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidics-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates, and easier purification processes with greater yield and higher specific activity of desired probes. Several proof-of-principle examples along with the basics of device architecture and operation and the potential limitations of each design are discussed. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories ("decentralized model"), an easy-to-use, stand-alone, flexible, fully automated, radiochemical microfluidic platform can provide simpler and more cost-effective procedures for molecular imaging using PET.

摘要

由于正电子发射断层扫描(PET)的需求增加,必须利用新的放射化学和工程技术来满足各种放射性标记化合物的广泛需求,以改进 PET 探针的生产和开发。由于微流控反应器在放射合成方面具有许多优于传统标记系统的潜在优势,因此目前引起了极大的兴趣。基于微流控的放射化学可以减少前体的用量,加快反应速度,并简化纯化过程,从而提高所需探针的产量和比活度。本文讨论了一些原理验证示例,以及器件结构和操作的基础,以及每种设计的潜在局限性。除了从集中的回旋加速器设施到各个成像中心和实验室的放射性同位素分配的概念(“分散模型”)之外,易于使用、独立、灵活、全自动、放射化学微流控平台可以为使用 PET 的分子成像提供更简单、更具成本效益的程序。

相似文献

2
Microfluidic technology for PET radiochemistry.
Appl Radiat Isot. 2006 Mar;64(3):333-6. doi: 10.1016/j.apradiso.2005.08.009. Epub 2005 Nov 14.
3
Microfluidic reactor for the radiosynthesis of PET radiotracers.
Appl Radiat Isot. 2006 Mar;64(3):325-32. doi: 10.1016/j.apradiso.2005.08.007. Epub 2005 Nov 15.
4
Molecular Imaging Probe Development using Microfluidics.
Curr Org Synth. 2011 Aug 1;8(4):473-487. doi: 10.2174/157017911796117205.
5
Hardware and software modifications on the Advion NanoTek microfluidic platform to extend flexibility for radiochemical synthesis.
Appl Radiat Isot. 2014 Feb;84:40-7. doi: 10.1016/j.apradiso.2013.10.020. Epub 2013 Nov 11.
6
Recent Advances in Microfluidic Devices for the Radiosynthesis of PET-imaging Probes.
Chem Asian J. 2022 Oct 17;17(20):e202200579. doi: 10.1002/asia.202200579. Epub 2022 Sep 15.
7
Microfluidics: a groundbreaking technology for PET tracer production?
Molecules. 2013 Jul 5;18(7):7930-56. doi: 10.3390/molecules18077930.
9
Rapid carbon-11 radiolabelling for PET using microfluidics.
Chemistry. 2011 Jan 10;17(2):460-3. doi: 10.1002/chem.201002644. Epub 2010 Dec 3.
10
Microfluidics for synthesis of peptide-based PET tracers.
Biomed Res Int. 2013;2013:839683. doi: 10.1155/2013/839683. Epub 2013 Oct 31.

引用本文的文献

3
Development and implementation of ISAR, a new synthesis platform for radiopharmaceutical production.
EJNMMI Radiopharm Chem. 2019 Sep 18;4(1):24. doi: 10.1186/s41181-019-0077-0.
4
The Current Role of Microfluidics in Radiofluorination Chemistry.
Mol Imaging Biol. 2020 Jun;22(3):463-475. doi: 10.1007/s11307-019-01414-6.
6
Imaging biomarkers or biomarker imaging?
Pharmaceuticals (Basel). 2014 Jun 25;7(7):765-78. doi: 10.3390/ph7070765.
7
Microfluidics for synthesis of peptide-based PET tracers.
Biomed Res Int. 2013;2013:839683. doi: 10.1155/2013/839683. Epub 2013 Oct 31.
8
Automated solid-phase radiofluorination using polymer-supported phosphazenes.
Molecules. 2013 Aug 30;18(9):10531-47. doi: 10.3390/molecules180910531.
9
Microfluidics: a groundbreaking technology for PET tracer production?
Molecules. 2013 Jul 5;18(7):7930-56. doi: 10.3390/molecules18077930.
10
Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer.
Lab Chip. 2013 Jan 7;13(1):136-45. doi: 10.1039/c2lc40853h. Epub 2012 Nov 7.

本文引用的文献

1
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
2
Integrated Microfluidic Reactors.
Nano Today. 2009 Dec;4(6):470-481. doi: 10.1016/j.nantod.2009.10.007.
4
An integrated microfluidic device for large-scale in situ click chemistry screening.
Lab Chip. 2009 Aug 21;9(16):2281-5. doi: 10.1039/b907430a. Epub 2009 Jun 17.
5
Microreactors for radiopharmaceutical synthesis.
Lab Chip. 2009 May 21;9(10):1326-33. doi: 10.1039/b820299k. Epub 2009 Mar 26.
6
Radiolysis of 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) and the role of ethanol and radioactive concentration.
Appl Radiat Isot. 2009 Jun;67(6):990-5. doi: 10.1016/j.apradiso.2009.01.005. Epub 2009 Jan 21.
8
Integrated microfluidic bioprocessor for single-cell gene expression analysis.
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20173-8. doi: 10.1073/pnas.0806355106. Epub 2008 Dec 15.
9
Fast and repetitive in-capillary production of [18F]FDG.
Eur J Nucl Med Mol Imaging. 2009 Apr;36(4):653-8. doi: 10.1007/s00259-008-0985-9. Epub 2008 Nov 27.
10
Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography.
Angew Chem Int Ed Engl. 2008;47(47):8998-9033. doi: 10.1002/anie.200800222.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验