Dipartimento di Fisica, Universita' di Camerino, Camerino, Italy.
Biophys J. 2010 Jul 7;99(1):163-74. doi: 10.1016/j.bpj.2010.04.006.
The influence of the cell shape on the dielectric and conductometric properties of biological cell suspensions has been investigated from a theoretical point of view presenting an analytical solution of the electrostatic problem in the case of prolate and oblate spheroidal geometries. The model, which extends to spheroidal geometries the approach developed by other researchers in the case of a spherical geometry, takes explicitly into account the charge distributions at the cell membrane interfaces. The presence of these charge distributions, which govern the trans-membrane potential DeltaV, produces composite dielectric spectra with two contiguous relaxation processes, known as the alpha-dispersion and the beta-dispersion. By using this approach, we present a series of dielectric spectra for different values of the different electrical parameters (the permittivity epsilon and the electrical conductivity sigma, together with the surface conductivity gamma due to the surface charge distribution) that define the whole behavior of the system. In particular, we analyze the interplay between the parameters governing the alpha-dispersion and those influencing the beta-dispersion. Even if these relaxation processes generally occur in well-separated frequency ranges, it is worth noting that, for certain values of the membrane conductivity, the high-frequency dispersion attributed to the Maxwell-Wagner effect is influenced not only by the bulk electrical parameters of the different adjacent media, but also by the surface conductivity at the two membrane interfaces.
从理论角度研究了细胞形状对生物细胞悬浮液介电和电导性质的影响,提出了一种针对长轴和扁轴椭球几何形状的静电问题解析解。该模型将其他研究人员在球形几何形状情况下发展的方法扩展到了椭球几何形状,明确考虑了细胞膜界面处的电荷分布。这些电荷分布控制着跨膜电位 DeltaV,产生了具有两个连续弛豫过程的复合介电谱,分别称为 alpha 弥散和 beta 弥散。通过使用这种方法,我们为不同的电参数(介电常数 epsilon 和电导率 sigma,以及由于表面电荷分布引起的表面电导率 gamma)的不同值呈现了一系列介电谱,这些参数定义了整个系统的行为。特别是,我们分析了控制 alpha 弥散的参数和影响 beta 弥散的参数之间的相互作用。尽管这些弛豫过程通常发生在分离良好的频率范围内,但值得注意的是,对于膜电导率的某些值,归因于 Maxwell-Wagner 效应的高频弥散不仅受到不同相邻介质的体电参数的影响,还受到两个膜界面处的表面电导率的影响。