Suppr超能文献

基于时空贝叶斯层次模型的概率性每日ILI 综合征监测。

Probabilistic daily ILI syndromic surveillance with a spatio-temporal Bayesian hierarchical model.

机构信息

Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan.

出版信息

PLoS One. 2010 Jul 16;5(7):e11626. doi: 10.1371/journal.pone.0011626.

Abstract

BACKGROUND

For daily syndromic surveillance to be effective, an efficient and sensible algorithm would be expected to detect aberrations in influenza illness, and alert public health workers prior to any impending epidemic. This detection or alert surely contains uncertainty, and thus should be evaluated with a proper probabilistic measure. However, traditional monitoring mechanisms simply provide a binary alert, failing to adequately address this uncertainty.

METHODS AND FINDINGS

Based on the Bayesian posterior probability of influenza-like illness (ILI) visits, the intensity of outbreak can be directly assessed. The numbers of daily emergency room ILI visits at five community hospitals in Taipei City during 2006-2007 were collected and fitted with a Bayesian hierarchical model containing meteorological factors such as temperature and vapor pressure, spatial interaction with conditional autoregressive structure, weekend and holiday effects, seasonality factors, and previous ILI visits. The proposed algorithm recommends an alert for action if the posterior probability is larger than 70%. External data from January to February of 2008 were retained for validation. The decision rule detects successfully the peak in the validation period. When comparing the posterior probability evaluation with the modified Cusum method, results show that the proposed method is able to detect the signals 1-2 days prior to the rise of ILI visits.

CONCLUSIONS

This Bayesian hierarchical model not only constitutes a dynamic surveillance system but also constructs a stochastic evaluation of the need to call for alert. The monitoring mechanism provides earlier detection as well as a complementary tool for current surveillance programs.

摘要

背景

为了使日常症状监测有效,人们期望有一种高效且合理的算法能够检测到流感疾病的异常,并在任何即将发生的疫情之前向公共卫生工作者发出警报。这种检测或警报肯定存在不确定性,因此应该用适当的概率措施进行评估。然而,传统的监测机制只是提供一个二进制的警报,未能充分解决这种不确定性。

方法和发现

基于流感样疾病(ILI)就诊的贝叶斯后验概率,可以直接评估疫情的强度。收集了 2006-2007 年台北市五家社区医院每天急诊ILI 就诊的人数,并将其拟合到一个贝叶斯层次模型中,该模型包含温度和蒸汽压等气象因素、具有条件自回归结构的空间相互作用、周末和节假日效应、季节性因素以及之前的 ILI 就诊人数。如果后验概率大于 70%,建议采取行动发出警报。将 2008 年 1 月至 2 月的外部数据保留用于验证。决策规则成功地检测到验证期的高峰。将后验概率评估与修正的 Cusum 方法进行比较,结果表明,该方法能够在 ILI 就诊人数上升前 1-2 天检测到信号。

结论

这种贝叶斯层次模型不仅构成了一个动态监测系统,而且还构建了对需要发出警报的随机评估。该监测机制提供了更早的检测,并为当前的监测计划提供了一个补充工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ea/2905374/c7ca09ce7446/pone.0011626.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验