Suppr超能文献

利用多个监测系统对2010 - 2014年墨尔本流感季节进行回顾性预测。

Retrospective forecasting of the 2010-2014 Melbourne influenza seasons using multiple surveillance systems.

作者信息

Moss R, Zarebski A, Dawson P, McCAW J M

机构信息

Centre for Epidemiology and Biostatistics,Melbourne School of Population and Global Health,The University of Melbourne,Melbourne,Australia.

School of Mathematics and Statistics,The University of Melbourne,Melbourne,Australia.

出版信息

Epidemiol Infect. 2017 Jan;145(1):156-169. doi: 10.1017/S0950268816002053. Epub 2016 Sep 27.

Abstract

Accurate forecasting of seasonal influenza epidemics is of great concern to healthcare providers in temperate climates, since these epidemics vary substantially in their size, timing and duration from year to year, making it a challenge to deliver timely and proportionate responses. Previous studies have shown that Bayesian estimation techniques can accurately predict when an influenza epidemic will peak many weeks in advance, and we have previously tailored these methods for metropolitan Melbourne (Australia) and Google Flu Trends data. Here we extend these methods to clinical observation and laboratory-confirmation data for Melbourne, on the grounds that these data sources provide more accurate characterizations of influenza activity. We show that from each of these data sources we can accurately predict the timing of the epidemic peak 4-6 weeks in advance. We also show that making simultaneous use of multiple surveillance systems to improve forecast skill remains a fundamental challenge. Disparate systems provide complementary characterizations of disease activity, which may or may not be comparable, and it is unclear how a 'ground truth' for evaluating forecasts against these multiple characterizations might be defined. These findings are a significant step towards making optimal use of routine surveillance data for outbreak forecasting.

摘要

在温带气候地区,准确预测季节性流感疫情是医疗服务提供者极为关注的问题,因为这些疫情在规模、时间和持续时间上每年都有很大差异,这使得及时做出适当应对成为一项挑战。先前的研究表明,贝叶斯估计技术能够提前许多周准确预测流感疫情何时达到峰值,我们之前已针对澳大利亚墨尔本市区和谷歌流感趋势数据对这些方法进行了调整。在此,我们将这些方法扩展至墨尔本的临床观察和实验室确诊数据,因为这些数据源能更准确地描述流感活动情况。我们表明,从这些数据源中的每一个,我们都能提前4 - 6周准确预测疫情峰值的时间。我们还表明,同时使用多个监测系统以提高预测技能仍然是一个根本挑战。不同的系统提供了疾病活动的互补性描述,这些描述可能可比,也可能不可比,而且尚不清楚如何针对这些多种描述来定义用于评估预测的“地面真值”。这些发现朝着最佳利用常规监测数据进行疫情预测迈出了重要一步。

相似文献

1
Retrospective forecasting of the 2010-2014 Melbourne influenza seasons using multiple surveillance systems.
Epidemiol Infect. 2017 Jan;145(1):156-169. doi: 10.1017/S0950268816002053. Epub 2016 Sep 27.
2
Forecasting influenza outbreak dynamics in Melbourne from Internet search query surveillance data.
Influenza Other Respir Viruses. 2016 Jul;10(4):314-23. doi: 10.1111/irv.12376. Epub 2016 Mar 7.
3
Epidemic forecasts as a tool for public health: interpretation and (re)calibration.
Aust N Z J Public Health. 2018 Feb;42(1):69-76. doi: 10.1111/1753-6405.12750. Epub 2017 Dec 27.
4
Multiscale influenza forecasting.
Nat Commun. 2021 May 20;12(1):2991. doi: 10.1038/s41467-021-23234-5.
5
Development and validation of influenza forecasting for 64 temperate and tropical countries.
PLoS Comput Biol. 2019 Feb 27;15(2):e1006742. doi: 10.1371/journal.pcbi.1006742. eCollection 2019 Feb.
6
Forecasting Influenza Epidemics in Hong Kong.
PLoS Comput Biol. 2015 Jul 30;11(7):e1004383. doi: 10.1371/journal.pcbi.1004383. eCollection 2015 Jul.
9
Forecasting seasonal outbreaks of influenza.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20425-30. doi: 10.1073/pnas.1208772109. Epub 2012 Nov 26.
10
Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model.
Int J Environ Res Public Health. 2020 Feb 21;17(4):1381. doi: 10.3390/ijerph17041381.

引用本文的文献

1
A Framework for Evaluating the Use of Surveillance Systems for Short-Term Influenza Forecasting.
Influenza Other Respir Viruses. 2025 Aug;19(8):e70144. doi: 10.1111/irv.70144.
2
Estimating epidemic dynamics with genomic and time series data.
J R Soc Interface. 2025 Jun;22(227):20240632. doi: 10.1098/rsif.2024.0632. Epub 2025 Jun 4.
3
4
Near-term forecasting of Covid-19 cases and hospitalisations in Aotearoa New Zealand.
PLoS Comput Biol. 2024 Jan 8;20(1):e1011752. doi: 10.1371/journal.pcbi.1011752. eCollection 2024 Jan.
5
Forecasting COVID-19 activity in Australia to support pandemic response: May to October 2020.
Sci Rep. 2023 May 30;13(1):8763. doi: 10.1038/s41598-023-35668-6.
6
Accurate influenza forecasts using type-specific incidence data for small geographic units.
PLoS Comput Biol. 2021 Jul 29;17(7):e1009230. doi: 10.1371/journal.pcbi.1009230. eCollection 2021 Jul.
7
Forecasting influenza in Europe using a metapopulation model incorporating cross-border commuting and air travel.
PLoS Comput Biol. 2020 Oct 14;16(10):e1008233. doi: 10.1371/journal.pcbi.1008233. eCollection 2020 Oct.
8
Epidemiological data from the COVID-19 outbreak, real-time case information.
Sci Data. 2020 Mar 24;7(1):106. doi: 10.1038/s41597-020-0448-0.
9
What can urban mobility data reveal about the spatial distribution of infection in a single city?
BMC Public Health. 2019 May 29;19(1):656. doi: 10.1186/s12889-019-6968-x.
10
Forecasting national and regional influenza-like illness for the USA.
PLoS Comput Biol. 2019 May 23;15(5):e1007013. doi: 10.1371/journal.pcbi.1007013. eCollection 2019 May.

本文引用的文献

1
Forecasting influenza outbreak dynamics in Melbourne from Internet search query surveillance data.
Influenza Other Respir Viruses. 2016 Jul;10(4):314-23. doi: 10.1111/irv.12376. Epub 2016 Mar 7.
2
How severe was the 2015 influenza season in Australia?
Med J Aust. 2016 Feb 1;204(2):60-1. doi: 10.5694/mja15.01094.
4
Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance.
PLoS Comput Biol. 2015 Oct 29;11(10):e1004513. doi: 10.1371/journal.pcbi.1004513. eCollection 2015 Oct.
5
Forecasting Influenza Epidemics in Hong Kong.
PLoS Comput Biol. 2015 Jul 30;11(7):e1004383. doi: 10.1371/journal.pcbi.1004383. eCollection 2015 Jul.
6
Four key challenges in infectious disease modelling using data from multiple sources.
Epidemics. 2015 Mar;10:83-7. doi: 10.1016/j.epidem.2014.09.004. Epub 2014 Sep 28.
7
Inference of seasonal and pandemic influenza transmission dynamics.
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2723-8. doi: 10.1073/pnas.1415012112. Epub 2015 Feb 17.
8
Detecting disease outbreaks using a combined Bayesian network and particle filter approach.
J Theor Biol. 2015 Apr 7;370:171-83. doi: 10.1016/j.jtbi.2015.01.023. Epub 2015 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验