Department of Neuroscience, Division of Brain Research, Karolinska Institutet, Stockholm Sweden.
Front Syst Neurosci. 2010 Jul 2;4:28. doi: 10.3389/fnsys.2010.00028. eCollection 2010.
A fundamental goal in vision science is to determine how many neurons in how many areas are required to compute a coherent interpretation of the visual scene. Here I propose six principles of cortical dynamics of visual processing in the first 150 ms following the appearance of a visual stimulus. Fast synaptic communication between neurons depends on the driving neurons and the biophysical history and driving forces of the target neurons. Under these constraints, the retina communicates changes in the field of view driving large populations of neurons in visual areas into a dynamic sequence of feed-forward communication and integration of the inward current of the change signal into the dendrites of higher order area neurons (30-70 ms). Simultaneously an even larger number of neurons within each area receiving feed-forward input are pre-excited to sub-threshold levels. The higher order area neurons communicate the results of their computations as feedback adding inward current to the excited and pre-excited neurons in lower areas. This feedback reconciles computational differences between higher and lower areas (75-120 ms). This brings the lower area neurons into a new dynamic regime characterized by reduced driving forces and sparse firing reflecting the visual areas interpretation of the current scene (140 ms). The population membrane potentials and net-inward/outward currents and firing are well behaved at the mesoscopic scale, such that the decoding in retinotopic cortical space shows the visual areas' interpretation of the current scene. These dynamics have plausible biophysical explanations. The principles are theoretical, predictive, supported by recent experiments and easily lend themselves to experimental tests or computational modeling.
视觉科学的一个基本目标是确定需要多少个神经元和多少个区域来计算视觉场景的连贯解释。在这里,我提出了视觉处理的皮质动力学的六个原则,这些原则发生在视觉刺激出现后的头 150 毫秒内。神经元之间的快速突触通讯取决于驱动神经元以及目标神经元的生物物理历史和驱动力。在这些约束条件下,视网膜将视野变化传递给视觉区域中的大量神经元,形成一个动态的前馈通讯序列,并将变化信号的内向电流整合到高阶区域神经元的树突中(30-70 毫秒)。同时,每个区域内接收前馈输入的神经元数量更多,被预激发到亚阈值水平。高阶区域神经元将其计算结果作为反馈传递,将内向电流添加到较低区域中兴奋和预兴奋的神经元中。这种反馈协调了高低阶区域之间的计算差异(75-120 毫秒)。这使得较低区域的神经元进入一个新的动态状态,其特征是驱动力降低和稀疏放电,反映了视觉区域对当前场景的解释(140 毫秒)。在介观尺度上,群体膜电位、净内向/外向电流和放电行为表现良好,因此在视网膜皮质空间中的解码显示了视觉区域对当前场景的解释。这些动态具有合理的生物物理解释。这些原则是理论性的、可预测的,得到了最近实验的支持,并且很容易进行实验测试或计算建模。