Suppr超能文献

多环境模型估计用于秀丽隐杆线虫运动分析。

Multi-environment model estimation for motility analysis of Caenorhabditis elegans.

机构信息

Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, United States of America.

出版信息

PLoS One. 2010 Jul 22;5(7):e11631. doi: 10.1371/journal.pone.0011631.

Abstract

The nematode Caenorhabditis elegans is a well-known model organism used to investigate fundamental questions in biology. Motility assays of this small roundworm are designed to study the relationships between genes and behavior. Commonly, motility analysis is used to classify nematode movements and characterize them quantitatively. Over the past years, C. elegans' motility has been studied across a wide range of environments, including crawling on substrates, swimming in fluids, and locomoting through microfluidic substrates. However, each environment often requires customized image processing tools relying on heuristic parameter tuning. In the present study, we propose a novel Multi-Environment Model Estimation (MEME) framework for automated image segmentation that is versatile across various environments. The MEME platform is constructed around the concept of Mixture of Gaussian (MOG) models, where statistical models for both the background environment and the nematode appearance are explicitly learned and used to accurately segment a target nematode. Our method is designed to simplify the burden often imposed on users; here, only a single image which includes a nematode in its environment must be provided for model learning. In addition, our platform enables the extraction of nematode 'skeletons' for straightforward motility quantification. We test our algorithm on various locomotive environments and compare performances with an intensity-based thresholding method. Overall, MEME outperforms the threshold-based approach for the overwhelming majority of cases examined. Ultimately, MEME provides researchers with an attractive platform for C. elegans' segmentation and 'skeletonizing' across a wide range of motility assays.

摘要

秀丽隐杆线虫是一种广为人知的模式生物,用于研究生物学中的基本问题。这种小蛔虫的运动分析旨在研究基因与行为之间的关系。通常,运动分析用于对线虫的运动进行分类,并对其进行定量描述。在过去的几年中,已经在广泛的环境中研究了秀丽隐杆线虫的运动,包括在基质上爬行、在液体中游泳以及在微流控基质中移动。然而,每种环境通常都需要依赖启发式参数调整的定制图像处理工具。在本研究中,我们提出了一种新的多环境模型估计(MEME)框架,用于跨各种环境进行自动图像分割。MEME 平台基于高斯混合(MOG)模型的概念构建,其中明确学习和使用了背景环境和线虫外观的统计模型,以准确分割目标线虫。我们的方法旨在简化用户经常面临的负担;在这里,只需提供一张包含线虫及其环境的图像即可进行模型学习。此外,我们的平台还可以提取线虫的“骨架”,以便进行简单的运动量化。我们在各种运动环境中测试了我们的算法,并将其性能与基于强度的阈值方法进行了比较。总体而言,MEME 在绝大多数检查的情况下都优于基于阈值的方法。最终,MEME 为研究人员提供了一个有吸引力的平台,用于在广泛的运动分析中对线虫进行分割和“骨架化”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93b9/2908547/62e82b1b93aa/pone.0011631.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验