INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez cedex, France.
BMC Bioinformatics. 2010 Jul 28;11:401. doi: 10.1186/1471-2105-11-401.
Approximate Bayesian computation (ABC) is a recent flexible class of Monte-Carlo algorithms increasingly used to make model-based inference on complex evolutionary scenarios that have acted on natural populations. The software DIYABC offers a user-friendly interface allowing non-expert users to consider population histories involving any combination of population divergences, admixtures and population size changes. We here describe and illustrate new developments of this software that mainly include (i) inference from DNA sequence data in addition or separately to microsatellite data, (ii) the possibility to analyze five categories of loci considering balanced or non balanced sex ratios: autosomal diploid, autosomal haploid, X-linked, Y-linked and mitochondrial, and (iii) the possibility to perform model checking computation to assess the "goodness-of-fit" of a model, a feature of ABC analysis that has been so far neglected.
We used controlled simulated data sets generated under evolutionary scenarios involving various divergence and admixture events to evaluate the effect of mixing autosomal microsatellite, mtDNA and/or nuclear autosomal DNA sequence data on inferences. This evaluation included the comparison of competing scenarios and the quantification of their relative support, and the estimation of parameter posterior distributions under a given scenario. We also considered a set of scenarios often compared when making ABC inferences on the routes of introduction of invasive species to illustrate the interest of the new model checking option of DIYABC to assess model misfit.
Our new developments of the integrated software DIYABC should be particularly useful to make inference on complex evolutionary scenarios involving both recent and ancient historical events and using various types of molecular markers in diploid or haploid organisms. They offer a handy way for non-expert users to achieve model checking computation within an ABC framework, hence filling up a gap of ABC analysis. The software DIYABC V1.0 is freely available at http://www1.montpellier.inra.fr/CBGP/diyabc.
近似贝叶斯计算(ABC)是一种灵活的蒙特卡罗算法类别,越来越多地用于对复杂进化场景进行基于模型的推断,这些场景作用于自然种群。DIYABC 软件提供了一个用户友好的界面,允许非专业用户考虑涉及任何种群分歧、混合和种群大小变化组合的种群历史。我们在这里描述和说明该软件的新发展,主要包括(i)除微卫星数据外,还可以从 DNA 序列数据进行推断,(ii)分析考虑平衡或非平衡性别比例的五类基因座的可能性:常染色体二倍体、常染色体单体、X 连锁、Y 连锁和线粒体,以及(iii)进行模型检查计算的可能性,以评估模型的“拟合优度”,这是 ABC 分析迄今为止被忽视的一个特征。
我们使用了在涉及各种分歧和混合事件的进化场景下生成的受控模拟数据集来评估混合常染色体微卫星、mtDNA 和/或核常染色体 DNA 序列数据对推断的影响。这种评估包括比较竞争场景和量化它们的相对支持,以及在给定场景下估计参数后验分布。我们还考虑了一组经常用于入侵物种引入的 ABC 推断的场景,以说明 DIYABC 的新模型检查选项在评估模型不适配方面的意义。
我们对集成软件 DIYABC 的新发展特别有用,可以对涉及近代和古代历史事件的复杂进化场景进行推断,并在二倍体或单体生物中使用各种类型的分子标记。它们为非专业用户在 ABC 框架内进行模型检查计算提供了一种简便的方法,从而填补了 ABC 分析的一个空白。软件 DIYABC V1.0 可在 http://www1.montpellier.inra.fr/CBGP/diyabc 免费获得。