Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
Genetics. 2010 Jan;184(1):243-52. doi: 10.1534/genetics.109.109058. Epub 2009 Sep 28.
Until recently, the use of Bayesian inference was limited to a few cases because for many realistic probability models the likelihood function cannot be calculated analytically. The situation changed with the advent of likelihood-free inference algorithms, often subsumed under the term approximate Bayesian computation (ABC). A key innovation was the use of a postsampling regression adjustment, allowing larger tolerance values and as such shifting computation time to realistic orders of magnitude. Here we propose a reformulation of the regression adjustment in terms of a general linear model (GLM). This allows the integration into the sound theoretical framework of Bayesian statistics and the use of its methods, including model selection via Bayes factors. We then apply the proposed methodology to the question of population subdivision among western chimpanzees, Pan troglodytes verus.
直到最近,贝叶斯推断的使用还受到限制,因为对于许多现实的概率模型,似然函数无法进行解析计算。随着无似然推断算法的出现,这种情况发生了变化,这些算法通常被归入近似贝叶斯计算(ABC)的范畴。一个关键的创新是使用后抽样回归调整,允许更大的容忍值,从而将计算时间转移到现实的数量级。在这里,我们提出了一种基于广义线性模型(GLM)的回归调整的重新表述。这使得我们可以将其纳入贝叶斯统计的健全理论框架,并使用其方法,包括通过贝叶斯因子进行模型选择。然后,我们将所提出的方法应用于西部黑猩猩(Pan troglodytes verus)群体分支的问题。