Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania, USA.
Biophys J. 2010 Aug 4;99(3):L26-8. doi: 10.1016/j.bpj.2010.05.005.
The ability to fold proteins on a computer has highlighted the fact that existing force fields tend to be biased toward a particular type of secondary structure. Consequently, force fields for folding simulations are often chosen according to the native structure, implying that they are not truly "transferable." Here we show that, while the AMBER ff03 potential is known to favor helical structures, a simple correction to the backbone potential (ff03( *)) results in an unbiased energy function. We take as examples the 35-residue alpha-helical Villin HP35 and 37 residue beta-sheet Pin WW domains, which had not previously been folded with the same force field. Starting from unfolded configurations, simulations of both proteins in Amber ff03( *) in explicit solvent fold to within 2.0 A RMSD of the experimental structures. This demonstrates that a simple backbone correction results in a more transferable force field, an important requirement if simulations are to be used to interpret folding mechanism.
在计算机上折叠蛋白质的能力突出了这样一个事实,即现有的力场往往偏向于特定类型的二级结构。因此,折叠模拟的力场通常根据天然结构来选择,这意味着它们并不是真正的“可转移的”。在这里,我们表明,虽然众所周知 AMBER ff03 势能有利于螺旋结构,但对骨架势能(ff03())进行简单的修正会得到一个无偏差的能量函数。我们以 35 个残基的α-螺旋 Villin HP35 和 37 个残基的β-折叠 Pin WW 结构域为例,这两个蛋白质以前都没有用相同的力场折叠过。从展开的构象开始,在 Amber ff03() 中进行的两个蛋白质的模拟在明溶剂中折叠到实验结构的 2.0 A RMSD 以内。这表明,一个简单的骨架修正会产生一个更可转移的力场,如果模拟要用于解释折叠机制,这是一个重要的要求。