Liu Guangxiu, Zhang Manxiao, Chen Ximing, Zhang Wei, Ding Wei, Zhang Qi
Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China.
J Mol Evol. 2015 Feb;80(2):102-7. doi: 10.1007/s00239-015-9667-y. Epub 2015 Feb 3.
Threonine aldolases (TAs) catalyze the interconversion of threonine and glycine plus acetaldehyde in a pyridoxal phosphate-dependent manner. This class of enzymes complements the primary glycine biosynthetic pathway catalyzed by serine hydroxymethyltransferase (SHMT), and was shown to be necessary for yeast glycine auxotrophy. Because the reverse reaction of TA involves carbon-carbon bond formation, resulting in a β-hydroxyl-α-amino acid with two adjacent chiral centers, TAs are of high interests in synthetic chemistry and bioengineering studies. Here, we report systematic phylogenetic analysis of TAs. Our results demonstrated that L-TAs and D-TAs that are specific for L- and D-threonine, respectively, are two phylogenetically unique families, and both enzymes are different from their closely related enzymes SHMTs and bacterial alanine racemases (ARs). Interestingly, L-TAs can be further grouped into two evolutionarily distinct families, which share low sequence similarity with each other but likely possess the same structural fold, suggesting a convergent evolution of these enzymes. The first L-TA family contains enzymes of both prokaryotic and eukaryotic origins, and is related to fungal ARs, whereas the second contains only prokaryotic L-TAs. Furthermore, we show that horizontal gene transfer may occur frequently during the evolution of both L-TA families. Our results indicate the complex, dynamic, and convergent evolution process of TAs and suggest an updated classification scheme for L-TAs.
苏氨酸醛缩酶(TAs)以磷酸吡哆醛依赖的方式催化苏氨酸与甘氨酸和乙醛之间的相互转化。这类酶补充了由丝氨酸羟甲基转移酶(SHMT)催化的主要甘氨酸生物合成途径,并且已证明对酵母甘氨酸营养缺陷型是必需的。由于TA的逆反应涉及碳 - 碳键的形成,产生具有两个相邻手性中心的β - 羟基 - α - 氨基酸,因此TAs在合成化学和生物工程研究中备受关注。在此,我们报告了对TAs的系统发育分析。我们的结果表明,分别对L - 苏氨酸和D - 苏氨酸具有特异性的L - TAs和D - TAs是两个系统发育上独特的家族,并且这两种酶都与其密切相关的酶SHMTs和细菌丙氨酸消旋酶(ARs)不同。有趣的是,L - TAs可以进一步分为两个在进化上不同的家族,它们彼此之间的序列相似性较低,但可能具有相同的结构折叠,这表明这些酶存在趋同进化。第一个L - TA家族包含原核和真核来源的酶,并且与真菌ARs相关,而第二个家族仅包含原核L - TAs。此外,我们表明水平基因转移可能在两个L - TA家族的进化过程中频繁发生。我们的结果表明了TAs复杂、动态和趋同的进化过程,并提出了一种更新的L - TAs分类方案。