Librero Julián, Ibañez Berta, Martínez-Lizaga Natalia, Peiró Salvador, Bernal-Delgado Enrique
Navarrabiomed-Fundación Miguel Servet, Pamplona, Spain.
Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Bilbao, Spain.
PLoS One. 2017 Feb 6;12(2):e0170480. doi: 10.1371/journal.pone.0170480. eCollection 2017.
To illustrate the ability of hierarchical Bayesian spatio-temporal models in capturing different geo-temporal structures in order to explain hospital risk variations using three different conditions: Percutaneous Coronary Intervention (PCI), Colectomy in Colorectal Cancer (CCC) and Chronic Obstructive Pulmonary Disease (COPD).
This is an observational population-based spatio-temporal study, from 2002 to 2013, with a two-level geographical structure, Autonomous Communities (AC) and Health Care Areas (HA).
The Spanish National Health System, a quasi-federal structure with 17 regional governments (AC) with full responsibility in planning and financing, and 203 HA providing hospital and primary care to a defined population.
A poisson-log normal mixed model in the Bayesian framework was fitted using the INLA efficient estimation procedure.
The spatio-temporal hospitalization relative risks, the evolution of their variation, and the relative contribution (fraction of variation) of each of the model components (AC, HA, year and interaction AC-year).
Following PCI-CCC-CODP order, the three conditions show differences in the initial hospitalization rates (from 4 to 21 per 10,000 person-years) and in their trends (upward, inverted V shape, downward). Most of the risk variation is captured by phenomena occurring at the HA level (fraction variance: 51.6, 54.7 and 56.9%). At AC level, the risk of PCI hospitalization follow a heterogeneous ascending dynamic (interaction AC-year: 17.7%), whereas in COPD the AC role is more homogenous and important (37%).
In a system where the decisions loci are differentiated, the spatio-temporal modeling allows to assess the dynamic relative role of different levels of decision and their influence on health outcomes.
通过经皮冠状动脉介入治疗(PCI)、结直肠癌结肠切除术(CCC)和慢性阻塞性肺疾病(COPD)这三种不同病症,阐述分层贝叶斯时空模型捕捉不同地理时间结构以解释医院风险差异的能力。
这是一项基于人群的观察性时空研究,时间跨度为2002年至2013年,具有自治区(AC)和医疗保健区域(HA)两级地理结构。
西班牙国家卫生系统,是一个准联邦结构,有17个对规划和融资负全部责任的地区政府(AC),以及203个为特定人群提供医院和初级保健服务的HA。
使用INLA高效估计程序,在贝叶斯框架下拟合泊松 - 对数正态混合模型。
时空住院相对风险、其变化的演变,以及每个模型组件(AC、HA、年份和AC - 年份交互项)的相对贡献(变异分数)。
按照PCI - CCC - COPD的顺序,这三种病症在初始住院率(每10000人年从4例到21例)及其趋势(上升、倒V形、下降)方面存在差异。大部分风险差异由HA层面出现的现象所捕捉(变异分数:51.6%、54.7%和56.9%)。在AC层面,PCI住院风险呈现异质性上升动态(AC - 年份交互项:17.7%),而在COPD中,AC的作用更为均匀且重要(37%)。
在一个决策地点不同的系统中,时空建模能够评估不同决策层面的动态相对作用及其对健康结果的影响。