Suppr超能文献

演员-评论家架构在人体手臂功能性电刺激控制中的应用。

Application of the Actor-Critic Architecture to Functional Electrical Stimulation Control of a Human Arm.

作者信息

Thomas Philip, Branicky Michael, van den Bogert Antonie, Jagodnik Kathleen

机构信息

Department of Electrical Engineering and Computer Science, Case Western Reserve University.

出版信息

Proc Innov Appl Artif Intell Conf. 2009;2009:165-172.

Abstract

Clinical tests have shown that the dynamics of a human arm, controlled using Functional Electrical Stimulation (FES), can vary significantly between and during trials. In this paper, we study the application of the actor-critic architecture, with neural networks for the both the actor and the critic, as a controller that can adapt to these changing dynamics of a human arm. Development and tests were done in simulation using a planar arm model and Hill-based muscle dynamics. We begin by training it using a Proportional Derivative (PD) controller as a supervisor. We then make clinically relevant changes to the dynamics of the arm and test the actor-critic's ability to adapt without supervision in a reasonable number of episodes. Finally, we devise methods for achieving both rapid learning and long-term stability.

摘要

临床试验表明,使用功能性电刺激(FES)控制的人体手臂动力学在试验之间和试验过程中可能会有显著差异。在本文中,我们研究了使用神经网络分别作为行为体和评论家的行为-评论家架构的应用,将其作为一种能够适应人体手臂这些变化动力学的控制器。使用平面手臂模型和基于希尔的肌肉动力学在模拟中进行了开发和测试。我们首先使用比例微分(PD)控制器作为监督器对其进行训练。然后,我们对手臂动力学进行与临床相关的改变,并测试行为-评论家在合理数量的情节中无监督适应的能力。最后,我们设计了实现快速学习和长期稳定性的方法。

相似文献

3
Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1892-1905. doi: 10.1109/TNSRE.2017.2700395. Epub 2017 May 2.
4
Stochastic Integrated Actor-Critic for Deep Reinforcement Learning.
IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):6654-6666. doi: 10.1109/TNNLS.2022.3212273. Epub 2024 May 2.
7
Asynchronous learning for actor-critic neural networks and synchronous triggering for multiplayer system.
ISA Trans. 2022 Oct;129(Pt B):295-308. doi: 10.1016/j.isatra.2022.02.007. Epub 2022 Feb 10.
9

引用本文的文献

1
Neuromechanics-Based Neural Feedback Controller for Planar Arm Reaching Movements.
Bioengineering (Basel). 2023 Mar 30;10(4):436. doi: 10.3390/bioengineering10040436.
2
Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1892-1905. doi: 10.1109/TNSRE.2017.2700395. Epub 2017 May 2.
3
Optimization and evaluation of a proportional derivative controller for planar arm movement.
J Biomech. 2010 Apr 19;43(6):1086-91. doi: 10.1016/j.jbiomech.2009.12.017. Epub 2010 Jan 25.

本文引用的文献

2
A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements.
IEEE Trans Biomed Eng. 2009 Apr;56(4):941-8. doi: 10.1109/TBME.2008.2005946. Epub 2008 Sep 26.
3
Functional electrical stimulation in neurological disorders.
Eur J Neurol. 2008 May;15(5):437-44. doi: 10.1111/j.1468-1331.2008.02127.x.
5
Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions.
Spinal Cord. 2008 Apr;46(4):255-74. doi: 10.1038/sj.sc.3102091. Epub 2007 Sep 11.
6
Neuromuscular electrical stimulation in neurorehabilitation.
Muscle Nerve. 2007 May;35(5):562-90. doi: 10.1002/mus.20758.
7
Functional electrical stimulation for neuromuscular applications.
Annu Rev Biomed Eng. 2005;7:327-60. doi: 10.1146/annurev.bioeng.6.040803.140103.
8
Biological arm motion through reinforcement learning.
Biol Cybern. 2004 Jul;91(1):10-22. doi: 10.1007/s00422-004-0485-3. Epub 2004 Aug 9.
10
Standing-up exerciser based on functional electrical stimulation and body weight relief.
Med Biol Eng Comput. 2002 May;40(3):282-9. doi: 10.1007/BF02344209.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验