Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
PLoS Negl Trop Dis. 2010 Aug 3;4(8):e769. doi: 10.1371/journal.pntd.0000769.
Dengue virus is endemic in tropical and sub-tropical resource-poor countries. Dengue illness can range from a nonspecific febrile illness to a severe disease, Dengue Shock Syndrome (DSS), in which patients develop circulatory failure. Earlier diagnosis of severe dengue illnesses would have a substantial impact on the allocation of health resources in endemic countries.
We compared clinical laboratory findings collected within 72 hours of fever onset from a prospective cohort children presenting to one of two hospitals (one urban and one rural) in Thailand. Classification and regression tree analysis was used to develop diagnostic algorithms using different categories of dengue disease severity to distinguish between patients at elevated risk of developing a severe dengue illness and those at low risk. A diagnostic algorithm using WBC count, percent monocytes, platelet count, and hematocrit achieved 97% sensitivity to identify patients who went on to develop DSS while correctly excluding 48% of non-severe cases. Addition of an indicator of severe plasma leakage to the WHO definition led to 99% sensitivity using WBC count, percent neutrophils, AST, platelet count, and age.
This study identified two easily applicable diagnostic algorithms using early clinical indicators obtained within the first 72 hours of illness onset. The algorithms have high sensitivity to distinguish patients at elevated risk of developing severe dengue illness from patients at low risk, which included patients with mild dengue and other non-dengue febrile illnesses. Although these algorithms need to be validated in other populations, this study highlights the potential usefulness of specific clinical indicators early in illness.
登革热病毒在热带和亚热带资源匮乏的国家流行。登革热的症状从非特异性发热疾病到严重疾病登革热休克综合征(DSS)不等,在这种疾病中,患者会出现循环衰竭。早期诊断严重登革热疾病将对流行地区的卫生资源分配产生重大影响。
我们比较了在发热后 72 小时内从泰国的两家医院(一家城市医院和一家农村医院)前瞻性收集的临床实验室结果。使用分类回归树分析,根据不同的登革热疾病严重程度类别开发诊断算法,以区分处于发生严重登革热疾病高风险的患者和低风险的患者。使用白细胞计数、单核细胞百分比、血小板计数和血细胞比容的诊断算法可实现 97%的敏感性,以识别出将发展为 DSS 的患者,同时正确排除 48%的非严重病例。在世界卫生组织(WHO)定义中添加严重血浆渗漏的指标,使用白细胞计数、中性粒细胞百分比、AST、血小板计数和年龄可实现 99%的敏感性。
本研究使用在发病后 72 小时内获得的早期临床指标确定了两种易于应用的诊断算法。这些算法具有很高的敏感性,可以区分处于发生严重登革热疾病高风险的患者和低风险的患者,其中包括轻度登革热和其他非登革热发热疾病的患者。虽然这些算法需要在其他人群中进行验证,但本研究强调了在疾病早期使用特定临床指标的潜在有用性。