Suppr超能文献

深空中甘氨酸的形成途径:冰-水尘埃壳层激活的斯特雷克型反应。一种计算方法。

Deep-space glycine formation via Strecker-type reactions activated by ice water dust mantles. A computational approach.

机构信息

Dipartimento di Chimica IFM, NIS Centre of Excellence and INSTM (Materials and Technology National Consortium), UdR torino, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy.

出版信息

Phys Chem Chem Phys. 2010;12(20):5285-94. doi: 10.1039/b923439j.

Abstract

A Strecker-type synthesis of glycine by reacting NH(3), H(2)C=O and HCN in presence of ice water (H(2)O-ice) as a catalyst has been theoretically studied at B3LYP/6-31+G(d,p) level within a cluster approach in order to mimic reactions occurring in the interstellar and circumstellar medium (ICM). Results indicate that, despite the exoergonic character of the considered reactions occurring at the H(2)O-ice surface, the kinetics are slow due to relatively high electronic energy barriers (ΔU(0)(≠)=15-45 kcal mol(-1)). Reactions occurring within H(2)O-ice cavities, in which ice bulk effects have been modeled by assuming a dielectric continuum (ε=78), show energy barriers low enough to allow NH(2)CH(2)OH formation but not NH=CH2 (ΔU(0)(≠)= 2 and 21 kcal mol(-1), respectively) thus hindering the NH(2)CH(2)CN formation, i.e. the precursor of glycine, through Strecker channels. Moreover, hydrolysis of NH(2)CH(2)CN to give glycine is characterized by high electronic energy barriers (ΔU(0)(≠)=27-34 kcal mol(-1)) and cannot readily occur at cryogenic temperatures. Nevertheless, the facts that NH=CH(2) formation can readily be achieved through the radical-radical HCN+2H - NH−−>CH2 reaction [D. E. Woon, Astrophys. J., 2002, 571, L177-L180], and that present results indicate that the Strecker step of NH=CH(2)+HCN−−>NH(2)CH(2)CN exhibits a relative low energy barrier (ΔU(0)(≠)=8–9 kcal mol(-1)), suggest that a combination of these two mechanisms allows for the formation of NH(2)CH(2)CN in the ICM. These results strengthen the thesis that NH(2)CH(2)CN could have been formed and protected by icy dust particles, and then delivered through micro-bombardments onto the early Earth, leading to glycine formation upon contact with the primordial ocean.

摘要

在星际和星周介质(ICM)中发生的反应模拟中,采用团簇方法在 B3LYP/6-31+G(d,p)水平上理论研究了在冰水环境(H2O-ice)作为催化剂的条件下,通过 NH3、H2C=O 和 HCN 反应合成甘氨酸的 Strecker 型反应。结果表明,尽管考虑到在 H2O-ice 表面发生的反应是放热的,但由于相对较高的电子能垒(ΔU0(≠)=15-45 kcal mol-1),动力学过程较慢。在 H2O-ice 腔体内发生的反应中,通过假设介电连续体(ε=78)模拟冰体的影响,其能量壁垒足够低,允许 NH2CH2OH 形成,但不允许 NH=CH2 形成(ΔU0(≠)=2 和 21 kcal mol-1),从而阻碍了 NH2CH2CN 的形成,即甘氨酸的前体,通过 Strecker 通道。此外,NH2CH2CN 水解生成甘氨酸的特征是电子能垒较高(ΔU0(≠)=27-34 kcal mol-1),并且在低温下不易发生。然而,事实是 NH=CH2 的形成可以通过自由基-自由基 HCN+2H-NH−−>CH2 反应轻易地实现[D. E. Woon,天体物理学杂志,2002 年,571 期,L177-L180],并且目前的结果表明,NH=CH2+HCN−−>NH2CH2CN 的 Strecker 步骤表现出相对较低的能量壁垒(ΔU0(≠)=8-9 kcal mol-1),这表明这两种机制的结合允许在 ICM 中形成 NH2CH2CN。这些结果加强了以下论点,即 NH2CH2CN 可能已经通过冰尘颗粒形成并得到保护,然后通过微撞击输送到早期地球上,当与原始海洋接触时导致甘氨酸的形成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验