Suppr超能文献

组合方法确定脂质体介导的 siRNA 递送上的功能基团效应。

Combinatorial approach to determine functional group effects on lipidoid-mediated siRNA delivery.

机构信息

Department of Chemical Engineering and David H. Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

Bioconjug Chem. 2010 Aug 18;21(8):1448-54. doi: 10.1021/bc100041r.

Abstract

The application of RNA interference (RNAi), either in the clinic or in the laboratory, requires safe and effective delivery methods. Here, we develop a combinatorial approach to synthesize a library of delivery vectors based on two lipid-like substrates with known siRNA delivery capabilities. Members of this library have a mixture of lipid-like tails and feature appendages containing hydroxyl, carbamate, ether, or amine functional groups as well as variations in alkyl chain length and branching. Using a luciferase reporter system in HeLa cells, we studied the relationship between lipid chemical modification and delivery performance in vitro. The impact of the functional group was shown to vary depending on the overall amine content and tail number of the delivery vector. Additionally, in vivo performance was evaluated using a Factor VII knockdown assay. Two library members, each containing ether groups, were found to knock down the target protein at levels comparable to those of the parent delivery vector. These results demonstrate that small chemical changes to the delivery vector impact knockdown efficiency and cell viability both in vitro and in vivo. The work described here identifies new materials for siRNA delivery and provides new insight into the parameters for optimized chemical makeup of lipid-like siRNA delivery materials.

摘要

RNA 干扰(RNAi)的应用,无论是在临床还是在实验室,都需要安全有效的传递方法。在这里,我们开发了一种组合方法来合成基于两种具有已知 siRNA 传递能力的类脂底物的传递载体文库。该文库的成员具有混合的类脂尾部和特征附属物,包含羟基、氨基甲酸酯、醚或胺官能团以及烷基链长度和支化的变化。我们使用 HeLa 细胞中的荧光素酶报告系统研究了体外脂质化学修饰与传递性能之间的关系。结果表明,功能基团的影响取决于传递载体的总胺含量和尾部数量。此外,还通过因子 VII 敲低测定评估了体内性能。发现文库中的两个成员,每个成员都含有醚基团,其将靶蛋白敲低至与亲本传递载体相当的水平。这些结果表明,传递载体的微小化学变化会影响体外和体内的敲低效率和细胞活力。这里描述的工作确定了用于 siRNA 传递的新材料,并为优化类脂 siRNA 传递材料的化学组成提供了新的见解。

相似文献

1
Combinatorial approach to determine functional group effects on lipidoid-mediated siRNA delivery.
Bioconjug Chem. 2010 Aug 18;21(8):1448-54. doi: 10.1021/bc100041r.
2
Combinatorial Synthesis of a Lipidoid Library by Thiolactone Chemistry: Screening and Validation for siRNA Delivery.
Bioconjug Chem. 2020 Mar 18;31(3):852-860. doi: 10.1021/acs.bioconjchem.0c00013. Epub 2020 Feb 28.
3
Development of lipidoid-siRNA formulations for systemic delivery to the liver.
Mol Ther. 2009 May;17(5):872-9. doi: 10.1038/mt.2009.36. Epub 2009 Mar 3.
5
Combinatorial library of lipidoids for in vitro DNA delivery.
Bioconjug Chem. 2012 Jan 18;23(1):135-40. doi: 10.1021/bc200572w. Epub 2011 Dec 22.
7
Synthesis, characterization, and evaluation of ionizable lysine-based lipids for siRNA delivery.
Bioconjug Chem. 2013 Jan 16;24(1):36-43. doi: 10.1021/bc300346h. Epub 2012 Dec 18.
8
Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA.
Nano Lett. 2018 Jun 13;18(6):3814-3822. doi: 10.1021/acs.nanolett.8b01101. Epub 2018 May 8.
9
Lipid-like materials for low-dose, in vivo gene silencing.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1864-9. doi: 10.1073/pnas.0910603106. Epub 2010 Jan 11.
10
Enhanced intracellular siRNA delivery using bioreducible lipid-like nanoparticles.
Adv Healthc Mater. 2014 Sep;3(9):1398-403. doi: 10.1002/adhm.201400039. Epub 2014 Feb 20.

引用本文的文献

1
Rational design and modular synthesis of biodegradable ionizable lipids via the Passerini reaction for mRNA delivery.
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2409572122. doi: 10.1073/pnas.2409572122. Epub 2025 Jan 30.
2
Breaking the final barrier: Evolution of cationic and ionizable lipid structure in lipid nanoparticles to escape the endosome.
Adv Drug Deliv Rev. 2024 Nov;214:115446. doi: 10.1016/j.addr.2024.115446. Epub 2024 Sep 16.
3
A Comprehensive Review of mRNA Vaccines.
Int J Mol Sci. 2023 Jan 31;24(3):2700. doi: 10.3390/ijms24032700.
4
High-throughput screening of nanoparticles in drug delivery.
APL Bioeng. 2021 Aug 26;5(3):031511. doi: 10.1063/5.0057204. eCollection 2021 Sep.
5
Lipids and Lipid Derivatives for RNA Delivery.
Chem Rev. 2021 Oct 27;121(20):12181-12277. doi: 10.1021/acs.chemrev.1c00244. Epub 2021 Jul 19.
6
Lipophilic Polyamines as Promising Components of Liposomal Gene Delivery Systems.
Pharmaceutics. 2021 Jun 21;13(6):920. doi: 10.3390/pharmaceutics13060920.
7
Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems.
Curr Top Med Chem. 2021;21(2):92-114. doi: 10.2174/1568026620666201126162945.
8
Intracellular Delivery of His-Tagged Genome-Editing Proteins Enabled by Nitrilotriacetic Acid-Containing Lipidoid Nanoparticles.
Adv Healthc Mater. 2019 Mar;8(6):e1800996. doi: 10.1002/adhm.201800996. Epub 2018 Nov 22.
9
Transfection by cationic gemini lipids and surfactants.
Medchemcomm. 2018 Jul 17;9(9):1404-1425. doi: 10.1039/c8md00249e. eCollection 2018 Sep 1.
10
Immunogenicity Testing of Lipidoids In Vitro and In Silico: Modulating Lipidoid-Mediated TLR4 Activation by Nanoparticle Design.
Mol Ther Nucleic Acids. 2018 Jun 1;11:159-169. doi: 10.1016/j.omtn.2018.02.003. Epub 2018 Feb 13.

本文引用的文献

1
Lipid-like materials for low-dose, in vivo gene silencing.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1864-9. doi: 10.1073/pnas.0910603106. Epub 2010 Jan 11.
2
Acetylation of PAMAM dendrimers for cellular delivery of siRNA.
BMC Biotechnol. 2009 Apr 23;9:38. doi: 10.1186/1472-6750-9-38.
3
Lipid-based systemic delivery of siRNA.
Adv Drug Deliv Rev. 2009 Jul 25;61(9):721-31. doi: 10.1016/j.addr.2009.03.003. Epub 2009 Mar 26.
4
Cationic nucleoside lipids based on a 3-nitropyrrole universal base for siRNA delivery.
Bioconjug Chem. 2009 Feb;20(2):193-6. doi: 10.1021/bc800432n.
5
Structural analysis of DNA complexation with cationic lipids.
Nucleic Acids Res. 2009 Feb;37(3):849-57. doi: 10.1093/nar/gkn1003. Epub 2008 Dec 22.
6
Polymersome delivery of siRNA and antisense oligonucleotides.
J Control Release. 2009 Mar 4;134(2):132-40. doi: 10.1016/j.jconrel.2008.10.020. Epub 2008 Nov 12.
7
siRNA conjugate delivery systems.
Bioconjug Chem. 2009 Jan;20(1):5-14. doi: 10.1021/bc800278e.
8
Efficient nucleic acid transduction with lipoplexes containing novel piperazine- and polyamine-conjugated cholesterol derivatives.
Bioorg Med Chem Lett. 2009 Jan 1;19(1):100-3. doi: 10.1016/j.bmcl.2008.11.009. Epub 2008 Nov 6.
9
Efficient siRNA delivery with non-viral polymeric vehicles.
Pharm Res. 2009 Mar;26(3):657-66. doi: 10.1007/s11095-008-9774-1. Epub 2008 Nov 18.
10
Peptide-mediated delivery of nucleic acids into mammalian cells.
Methods Mol Biol. 2007;386:299-308. doi: 10.1007/978-1-59745-430-8_11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验