Suppr超能文献

用于 RNA 递送的脂质和脂质衍生物。

Lipids and Lipid Derivatives for RNA Delivery.

机构信息

Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States.

Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States.

出版信息

Chem Rev. 2021 Oct 27;121(20):12181-12277. doi: 10.1021/acs.chemrev.1c00244. Epub 2021 Jul 19.

Abstract

RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.

摘要

基于 RNA 的治疗方法通过多种机制显示出了治疗广泛疾病的巨大潜力,包括病理性基因的敲低、治疗性蛋白的表达和程序化基因编辑。由于 RNA 分子的固有不稳定性和负电荷,基于 RNA 的治疗方法可以最大限度地利用递药系统来克服生物屏障,并将 RNA 有效载荷递送到细胞质中。在不同类型的递药系统中,基于脂质的 RNA 递药系统,特别是脂质纳米颗粒(LNP),由于其独特的性质,如脂质成分的简单化学合成、LNP 的可扩展制造工艺和广泛的包装能力,已得到广泛研究。LNP 代表了最广泛使用的 RNA 治疗药物递药系统,这一点从三种 LNP-RNA 制剂,即 patisiran、BNT162b2 和 mRNA-1273 的临床批准中得到了证实。本综述涵盖了过去几十年中用于 RNA 递药的脂质、脂质衍生物和脂质衍生的大分子的最新进展。我们主要关注它们的化学结构、合成路线、表征、制剂方法和构效关系。我们还简要描述了代表性的临床前研究和临床试验的现状,并强调了未来的机遇和挑战。

相似文献

1
Lipids and Lipid Derivatives for RNA Delivery.
Chem Rev. 2021 Oct 27;121(20):12181-12277. doi: 10.1021/acs.chemrev.1c00244. Epub 2021 Jul 19.
2
An overview of lipid constituents in lipid nanoparticle mRNA delivery systems.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024 Jul-Aug;16(4):e1978. doi: 10.1002/wnan.1978.
3
Chemistry of Lipid Nanoparticles for RNA Delivery.
Acc Chem Res. 2022 Jan 4;55(1):2-12. doi: 10.1021/acs.accounts.1c00544. Epub 2021 Dec 1.
4
Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications.
Acc Chem Res. 2021 Dec 7;54(23):4283-4293. doi: 10.1021/acs.accounts.1c00550. Epub 2021 Nov 18.
5
Insights into the formulation of lipid nanoparticles for the optimization of mRNA therapeutics.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024 Sep-Oct;16(5):e1992. doi: 10.1002/wnan.1992.
6
A Basic Method for Formulating mRNA-Lipid Nanoparticle Vaccines in the Lab.
Methods Mol Biol. 2024;2786:237-254. doi: 10.1007/978-1-0716-3770-8_11.
7
Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications.
Adv Drug Deliv Rev. 2023 Sep;200:114990. doi: 10.1016/j.addr.2023.114990. Epub 2023 Jul 7.
8
Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing.
Acc Chem Res. 2021 Nov 2;54(21):4001-4011. doi: 10.1021/acs.accounts.1c00500. Epub 2021 Oct 20.
9
Payload distribution and capacity of mRNA lipid nanoparticles.
Nat Commun. 2022 Sep 23;13(1):5561. doi: 10.1038/s41467-022-33157-4.
10
Mesoscopic Structure of Lipid Nanoparticle Formulations for mRNA Drug Delivery: Comirnaty and Drug-Free Dispersions.
ACS Nano. 2024 Apr 2;18(13):9746-9764. doi: 10.1021/acsnano.4c02610. Epub 2024 Mar 21.

引用本文的文献

3
Peptide codes for organ-selective mRNA delivery.
Nat Mater. 2025 Sep 1. doi: 10.1038/s41563-025-02331-6.
4
Muscle-targeting LNP vaccines enable potent immune responses against varicella zoster virus.
Drug Deliv Transl Res. 2025 Sep 1. doi: 10.1007/s13346-025-01961-2.
5
Delivering the Message: Translating mRNA Therapy for Liver Inherited Metabolic Diseases.
J Inherit Metab Dis. 2025 Sep;48(5):e70078. doi: 10.1002/jimd.70078.
6
Recent Progress in Nano-TCM Active Ingredient Co-Delivery Systems for Inflammation-Mediated Diseases.
Int J Nanomedicine. 2025 Aug 2;20:9573-9596. doi: 10.2147/IJN.S526731. eCollection 2025.
7
Nanotechnology-based mRNA vaccines.
Nat Rev Methods Primers. 2023;3(1). doi: 10.1038/s43586-023-00246-7. Epub 2023 Aug 17.
9
CRISPR-based therapeutic genome editing for inherited blood disorders.
Nat Rev Drug Discov. 2025 Jul 14. doi: 10.1038/s41573-025-01236-y.
10
Delivery of GAS5 by LNP promotes tendon-bone healing in rotator cuff injury.
Bioact Mater. 2025 Jun 24;51:758-773. doi: 10.1016/j.bioactmat.2025.06.009. eCollection 2025 Sep.

本文引用的文献

1
Self-Assembled DNA Nanostructures-Based Nanocarriers Enabled Functional Nucleic Acids Delivery.
ACS Appl Bio Mater. 2020 May 18;3(5):2779-2795. doi: 10.1021/acsabm.9b01197. Epub 2020 Apr 9.
2
Non-cationic Material Design for Nucleic Acid Delivery.
Adv Ther (Weinh). 2020 Mar;3(3). doi: 10.1002/adtp.201900206. Epub 2020 Feb 13.
3
mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability.
Int J Pharm. 2021 May 15;601:120586. doi: 10.1016/j.ijpharm.2021.120586. Epub 2021 Apr 9.
4
A single dose of self-transcribing and replicating RNA-based SARS-CoV-2 vaccine produces protective adaptive immunity in mice.
Mol Ther. 2021 Jun 2;29(6):1970-1983. doi: 10.1016/j.ymthe.2021.04.001. Epub 2021 Apr 5.
5
Drug Targeting Platelet Membrane-Coated Nanoparticles.
Small Struct. 2020 Oct;1(1). doi: 10.1002/sstr.202000018. Epub 2020 Sep 9.
6
Nanoparticles containing constrained phospholipids deliver mRNA to liver immune cells in vivo without targeting ligands.
Bioeng Transl Med. 2020 May 27;5(3):e10161. doi: 10.1002/btm2.10161. eCollection 2020 Sep.
7
Neutralizing Activity of BNT162b2-Elicited Serum.
N Engl J Med. 2021 Apr 15;384(15):1466-1468. doi: 10.1056/NEJMc2102017. Epub 2021 Mar 8.
9
Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery.
Biomater Sci. 2021 Jun 15;9(12):4289-4300. doi: 10.1039/d0bm01947j.
10
Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing.
Nat Mater. 2021 May;20(5):701-710. doi: 10.1038/s41563-020-00886-0. Epub 2021 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验