Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
Integr Biol (Camb). 2011 Feb;3(2):126-33. doi: 10.1039/c0ib00019a. Epub 2010 Aug 17.
Naturally occurring microbes perform a variety of useful functions, with more complex processes requiring multiple functions performed by communities of multiple microbes. Synthetic biology via genetic engineering may be used to achieve desired multiple functions, e.g. multistep chemical and biological transformations, by adding genes to a single organism, but this is sometimes not possible due to incompatible metabolic requirements or not desirable in certain applications, especially in medical or environmental applications. Achieving multiple functions by mixing microbes that have not evolved to function together may not work due to competition of microbes, or lack of interactions among microbes. In nature, microbial communities are commonly spatially structured. Here, we tested whether spatial structure can be used to create a community of microbes that can perform a function they do not perform individually or when simply mixed. We constructed a core-shell fiber with Sphingobium chlorophenolicum, a pentachlorophenol (PCP) degrader, in the core layer and Ralstonia metallidurans, a mercuric ion (Hg(ii)) reducer, in the shell layer as a structured community using microfluidic laminar flow techniques. We applied a mixture of PCP and Hg(ii) to either a simple well-mixed culture broth (i.e. the unstructured community) or the spatially structured core-shell fibers. We found that without spatial structure, the community was unable to degrade PCP in the presence of Hg(ii) because S. chlorophenolicum is sensitive to Hg(ii). In contrast, with spatial structure in a core-shell fiber system, S. chlorophenolicum in a core layer was protected by R. metallidurans deposited in a shell layer, and the community was able to completely remove both PCP and Hg(ii) from a mixture. The appropriate size of the core-shell fiber was determined by the Damköhler number-the timescale of removal of Hg(ii) was on the same order of the timescale of diffusion of Hg(ii) through the outer layer when the shell layer was on the order of ~200 μm. Ultimately, with the ease of a child putting together 'Legos' to build a complex structure, using this approach one may be able to put together microorganisms to build communities that perform functions in vitro or even in vivo, e.g. as in a "microbiome on a pill".
天然存在的微生物具有多种有用的功能,而更复杂的过程则需要由多种微生物组成的群落来完成多种功能。通过遗传工程的合成生物学可以通过向单个生物体添加基因来实现所需的多种功能,例如多步化学和生物转化,但由于代谢要求不兼容或在某些应用中不理想,例如在医学或环境应用中,有时这是不可能的。通过混合尚未进化到一起发挥作用的微生物来实现多种功能可能由于微生物的竞争或微生物之间缺乏相互作用而无法实现。在自然界中,微生物群落通常是空间结构的。在这里,我们测试了空间结构是否可用于创建一种微生物群落,该群落可以执行它们单独或简单混合时无法执行的功能。我们使用微流控层流技术构建了一种核心-壳纤维,该纤维的核心层为 Sphingobium chlorophenolicum,这是一种五氯苯酚(PCP)降解剂,壳层为 Ralstonia metallidurans,这是一种汞离子(Hg(ii))还原剂。我们将 PCP 和 Hg(ii)的混合物施加到简单的混合培养物(即无结构群落)或空间结构的核心-壳纤维上。我们发现,如果没有空间结构,群落就无法在存在 Hg(ii)的情况下降解 PCP,因为 S. chlorophenolicum 对 Hg(ii)敏感。相比之下,在核心-壳纤维系统中具有空间结构时,核心层中的 S. chlorophenolicum 受到沉积在壳层中的 R. metallidurans 的保护,群落能够从混合物中完全去除 PCP 和 Hg(ii)。核心-壳纤维的适当尺寸由 Damköhler 数决定-去除 Hg(ii)的时间尺度与 Hg(ii)通过外层扩散的时间尺度相同,当壳层的尺寸约为 200 μm 时。最终,就像孩子用乐高积木搭建复杂结构一样简单,通过这种方法,人们可以将微生物组合在一起,构建在体外甚至体内发挥作用的群落,例如在“药丸上的微生物组”中。