文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

疏水性金纳米粒子与磷脂酰胆碱脂质的自组装:负载膜和双凹囊泡。

Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: membrane-loaded and janus vesicles.

机构信息

Department of Chemical Engineering, Texas Materials Institute, and Center for Nano and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712-1062, USA.

出版信息

Nano Lett. 2010 Sep 8;10(9):3733-9. doi: 10.1021/nl102387n.


DOI:10.1021/nl102387n
PMID:20731366
Abstract

Hybrids of hydrophobic sub-2-nm-diameter dodecanethiol-coated Au nanoparticles and phosphatidylcholine (PC) lipid vesicles made by extrusion were examined by cryogenic transmission electron microscopy (cryoTEM). The nanoparticles loaded the vesicles as a dense monolayer in the hydrophobic core of the lipid bilayer, without disrupting their structure. Nanoparticle-vesicle hybrids could also be made by a dialysis process, mixing preformed vesicles with detergent-stabilized nanoparticles, but this approach led to vesicles only partially loaded with nanoparticles that segregated into hemispherical domains, forming a Janus vesicle-nanoparticle hybrid structure.

摘要

通过挤出制备的疏水性亚 2nm 直径十二硫醇包覆金纳米粒子和磷脂(PC)脂质体的杂交体,通过低温透射电子显微镜(cryoTEM)进行了检查。纳米粒子作为密集的单层负载在脂质双层的疏水性核心中,而不会破坏其结构。也可以通过透析过程制备纳米粒子-脂质体杂交体,将预形成的脂质体与去污剂稳定的纳米粒子混合,但这种方法导致只有部分负载纳米粒子的脂质体,纳米粒子会分离成半球形域,形成 Janus 脂质体-纳米粒子杂交结构。

相似文献

[1]
Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: membrane-loaded and janus vesicles.

Nano Lett. 2010-9-8

[2]
Chloroform-enhanced incorporation of hydrophobic gold nanocrystals into dioleoylphosphatidylcholine (DOPC) vesicle membranes.

Langmuir. 2012-8-30

[3]
Chains, sheets, and droplets: assemblies of hydrophobic gold nanocrystals with saturated phosphatidylcholine lipid and squalene.

Langmuir. 2012-10-17

[4]
Fabrication of Au-Nanoparticle-Embedded Lipid Bilayer Membranes Supported on Solid Substrates.

J Phys Chem B. 2017-5-4

[5]
SERS and Cryo-EM Directly Reveal Different Liposome Structures during Interaction with Gold Nanoparticles.

J Phys Chem Lett. 2018-12-6

[6]
Integration of gold nanoparticles into bilayer structures via adaptive surface chemistry.

J Am Chem Soc. 2013-4-11

[7]
Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems.

J Phys Chem B. 2015-7-16

[8]
Effect of temperature and humidity on coarsening behavior of Au nanoparticles embedded in liquid crystalline lipid membrane.

Langmuir. 2012-7-17

[9]
The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers.

Small. 2019-4-23

[10]
Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.

Biophys Chem. 2015

引用本文的文献

[1]
Enhanced Photosensitivity and Surfactant Resistance in Nanopolymersome Membranes as a Function of Gold Nanoparticle Incorporation.

ACS Appl Opt Mater. 2025-2-11

[2]
Engineering Radiocatalytic Nanoliposomes with Hydrophobic Gold Nanoclusters for Radiotherapy Enhancement.

Adv Mater. 2024-12

[3]
Ultrasound Control of Pickering Emulsion-Based Capsule Preparation.

Sensors (Basel). 2024-9-2

[4]
Interactions between Layered Double Hydroxide Nanoparticles and Egg Yolk Lecithin Liposome Membranes.

Molecules. 2023-5-6

[5]
A Core-Shell Approach for Systematically Coarsening Nanoparticle-Membrane Interactions: Application to Silver Nanoparticles.

Nanomaterials (Basel). 2022-11-1

[6]
Effects of lipid bilayer encapsulation and lipid composition on the catalytic activity and colloidal stability of hydrophobic palladium nanoparticles in water.

RSC Adv. 2022-8-9

[7]
Amphiphilic Gold Nanoparticles: A Biomimetic Tool to Gain Mechanistic Insights into Peptide-Lipid Interactions.

Membranes (Basel). 2022-6-29

[8]
Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity.

RSC Adv. 2021-2-10

[9]
Magnetoliposomes with size controllable insertion of magnetic nanoparticles for efficient targeting of cancer cells.

RSC Adv. 2019-5-14

[10]
Ion-bridges and lipids drive aggregation of same-charge nanoparticles on lipid membranes.

Nanoscale. 2022-5-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索