Suppr超能文献

大流行性流感的有效繁殖数:前瞻性估计。

The effective reproduction number of pandemic influenza: prospective estimation.

机构信息

Infectious Disease Epidemiology Group, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China.

出版信息

Epidemiology. 2010 Nov;21(6):842-6. doi: 10.1097/EDE.0b013e3181f20977.

Abstract

BACKGROUND

Timely estimation of the transmissibility of a novel pandemic influenza virus was a public health priority in 2009.

METHODS

We extended methods for prospective estimation of the effective reproduction number (Rt) over time in an emerging epidemic to allow for reporting delays and repeated importations. We estimated Rt based on case notifications and hospitalizations associated with laboratory-confirmed pandemic (H1N1) 2009 virus infections in Hong Kong from June through October 2009.

RESULTS

Rt declined from around 1.4-1.5 at the start of the local epidemic to around 1.1-1.2 later in the summer, suggesting changes in transmissibility perhaps related to school vacations or seasonality. Estimates of Rt based on hospitalizations of confirmed H1N1 cases closely matched estimates based on case notifications.

CONCLUSION

Real-time monitoring of the effective reproduction number is feasible and can provide useful information to public health authorities for situational awareness and calibration of mitigation strategies.

摘要

背景

及时评估新型大流行性流感病毒的传播能力是 2009 年公共卫生的当务之急。

方法

我们扩展了针对新兴传染病中有效繁殖数(Rt)随时间变化的前瞻性估计方法,以允许报告延迟和重复输入。我们根据香港 2009 年 6 月至 10 月与实验室确诊的大流行性(H1N1)2009 病毒感染相关的病例报告和住院情况估算了 Rt。

结果

Rt 从当地疫情开始时的 1.4-1.5 左右下降到夏季晚些时候的 1.1-1.2 左右,表明传染性的变化可能与学校假期或季节性有关。基于确诊 H1N1 病例住院情况的 Rt 估计值与基于病例报告的估计值非常吻合。

结论

实时监测有效繁殖数是可行的,可以为公共卫生当局提供有价值的信息,以了解情况并校准缓解策略。

相似文献

1
The effective reproduction number of pandemic influenza: prospective estimation.
Epidemiology. 2010 Nov;21(6):842-6. doi: 10.1097/EDE.0b013e3181f20977.
2
School closure and mitigation of pandemic (H1N1) 2009, Hong Kong.
Emerg Infect Dis. 2010 Mar;16(3):538-41. doi: 10.3201/eid1603.091216.
3
Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study.
Lancet Public Health. 2020 May;5(5):e279-e288. doi: 10.1016/S2468-2667(20)30090-6. Epub 2020 Apr 17.
4
Real-time estimation of the hospitalization fatality risk of influenza A(H1N1)pdm09 in Hong Kong.
Epidemiol Infect. 2016 Jun;144(8):1579-83. doi: 10.1017/S0950268815003179.
10
Detection of an oseltamivir-resistant pandemic influenza A/H1N1 virus in Hong Kong.
J Clin Virol. 2009 Nov;46(3):298-9. doi: 10.1016/j.jcv.2009.08.004. Epub 2009 Sep 6.

引用本文的文献

1
Large-scale epidemiological modelling: scanning for mosquito-borne diseases spatio-temporal patterns in Brazil.
R Soc Open Sci. 2025 May 28;12(5):241261. doi: 10.1098/rsos.241261. eCollection 2025 May.
2
SARS-CoV-2 Infection in School Settings, Okinawa Prefecture, Japan, 2021-2022.
Emerg Infect Dis. 2024 Nov;30(11):2343-2351. doi: 10.3201/eid3011.240638.
5
A perspective on SARS-CoV-2 virus-like particles vaccines.
Int Immunopharmacol. 2023 Feb;115:109650. doi: 10.1016/j.intimp.2022.109650. Epub 2023 Jan 11.
6
Heterogeneity in the onwards transmission risk between local and imported cases affects practical estimates of the time-dependent reproduction number.
Philos Trans A Math Phys Eng Sci. 2022 Oct 3;380(2233):20210308. doi: 10.1098/rsta.2021.0308. Epub 2022 Aug 15.
7
Adding a reaction-restoration type transmission rate dynamic-law to the basic SEIR COVID-19 model.
PLoS One. 2022 Jun 16;17(6):e0269843. doi: 10.1371/journal.pone.0269843. eCollection 2022.
8
Fine-scale estimation of effective reproduction numbers for dengue surveillance.
PLoS Comput Biol. 2022 Jan 20;18(1):e1009791. doi: 10.1371/journal.pcbi.1009791. eCollection 2022 Jan.
9
Trust in the Health System and COVID-19 Treatment.
Front Psychol. 2021 Jul 9;12:643758. doi: 10.3389/fpsyg.2021.643758. eCollection 2021.
10
Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates.
Int J Forecast. 2022 Apr-Jun;38(2):505-520. doi: 10.1016/j.ijforecast.2021.07.001. Epub 2021 Jul 13.

本文引用的文献

1
Comparative epidemiology of pandemic and seasonal influenza A in households.
N Engl J Med. 2010 Jun 10;362(23):2175-2184. doi: 10.1056/NEJMoa0911530.
2
Shedding and transmission of novel influenza virus A/H1N1 infection in households--Germany, 2009.
Am J Epidemiol. 2010 Jun 1;171(11):1157-64. doi: 10.1093/aje/kwq071. Epub 2010 May 3.
3
School closure and mitigation of pandemic (H1N1) 2009, Hong Kong.
Emerg Infect Dis. 2010 Mar;16(3):538-41. doi: 10.3201/eid1603.091216.
4
Australia's winter with the 2009 pandemic influenza A (H1N1) virus.
N Engl J Med. 2009 Dec 31;361(27):2591-4. doi: 10.1056/NEJMp0910445. Epub 2009 Nov 25.
6
Early transmission characteristics of influenza A(H1N1)v in Australia: Victorian state, 16 May - 3 June 2009.
Euro Surveill. 2009 Oct 22;14(42):19363. doi: 10.2807/ese.14.42.19363-en.
7
Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus.
N Engl J Med. 2009 Nov 12;361(20):1945-52. doi: 10.1056/NEJMoa0906453. Epub 2009 Sep 10.
8
The transmissibility and control of pandemic influenza A (H1N1) virus.
Science. 2009 Oct 30;326(5953):729-33. doi: 10.1126/science.1177373. Epub 2009 Sep 10.
10
How to maintain surveillance for novel influenza A H1N1 when there are too many cases to count.
Lancet. 2009 Oct 3;374(9696):1209-11. doi: 10.1016/S0140-6736(09)61377-5. Epub 2009 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验