Clifford Gd, Nemati S, Sameni R
Harvard-MIT Division of Health Sciences and Technology (HST), Cambridge, MA 02142, USA.
Comput Cardiol. 2008;35(4749156):773-776. doi: 10.1109/CIC.2008.4749156.
We present generalizations of our previously published artificial models for generating multi-channel ECG so that the simulation of abnormal rhythms is possible. Using a three-dimensional vectorcardiogram (VCG) formulation, we generate the normal cardiac dipole for a patient using a sum of Gaussian kernels, fitted to real VCG recordings. Abnormal beats are then specified either as new dipoles, or as perturbations of the existing dipole. Switching between normal and abnormal beat types is achieved using a hidden Markov model (HMM). Probability transitions can be learned from real data or modeled by coupling to heart rate and sympathovagal balance. Natural morphology changes form beat-to-beat are incorporated as before from varying the angular frequency of the dipole as a function of the inter-beat (RR) interval. The RR interval time series is generated using our previously described model whereby time-and frequency-domain heart rate (HR) and heart rate variability (HRV) characteristics can be specified. QT-HR hysteresis is simulated by coupling the Gaussian kernels associated with the T-wave in the model with a nonlinear factor related to the local HR (determined from the last n RR intervals). Morphology changes due to respiration are simulated by coupling the RR interval to the angular frequency of the dipole. We demonstrate an example of the use of this model by simulating T-Wave Alternans (TWA). The magnitude of the TWA effect is modeled as a disturbance on the T-loop of the dipole with a magnitude that differs in each of the three VCG planes. The effect is then turned on or off using a HMM. The values of the transition matrix are determined by the local heart rate, such that when the HR ramps up towards 100 BPM, the probability of observing a TWA effect rapidly but smoothly increases. In this way, no 'sudden' switching from non-TWA to TWA is observed, and the natural tendency for TWA to be associated with a critical HR-related activation level is simulated. Finally, to generate multi-lead signals, the VCG is mapped to any set of clinical leads using a Dower-like transform derived from a least-squares optimization between known VCGs and known lead morphologies. ECGs with calibrated amounts of TWA were generated by this model and included in the PhysioNet/CinC Challenge 2008 data set.
我们展示了之前发表的用于生成多通道心电图的人工模型的推广,以便能够模拟异常心律。使用三维向量心电图(VCG)公式,我们通过高斯核的总和为患者生成正常心脏偶极子,并将其拟合到实际的VCG记录中。然后,异常搏动可指定为新的偶极子,或作为现有偶极子的扰动。使用隐马尔可夫模型(HMM)实现正常和异常搏动类型之间的切换。概率转移可以从实际数据中学习,或通过与心率和交感迷走神经平衡耦合进行建模。逐搏的自然形态变化如前所述,通过根据逐搏(RR)间期改变偶极子的角频率来纳入。RR间期时间序列使用我们之前描述的模型生成,由此可以指定时域和频域心率(HR)以及心率变异性(HRV)特征。通过将模型中与T波相关的高斯核与与局部HR相关的非线性因子(由最后n个RR间期确定)耦合来模拟QT - HR滞后。通过将RR间期与偶极子的角频率耦合来模拟呼吸引起的形态变化。我们通过模拟T波交替(TWA)展示了该模型的一个使用示例。TWA效应的大小被建模为偶极子T环上的干扰,其大小在三个VCG平面中的每一个平面上都不同。然后使用HMM打开或关闭该效应。转移矩阵的值由局部心率决定,使得当HR上升至100次/分钟时,观察到TWA效应的概率迅速但平稳地增加。通过这种方式,未观察到从非TWA到TWA的“突然”切换,并且模拟了TWA与关键HR相关激活水平相关的自然趋势。最后,为了生成多导联信号,使用从已知VCG和已知导联形态之间的最小二乘优化导出的类似Dower变换,将VCG映射到任何一组临床导联。该模型生成了具有校准量TWA的心电图,并包含在2008年生理网络/计算机在心脏病学中的应用挑战赛数据集中。