Suppr超能文献

利用苯胺催化的腙键连接,高效地将蛋白质捕获剂偶联到生物传感器表面。

Efficient bioconjugation of protein capture agents to biosensor surfaces using aniline-catalyzed hydrazone ligation.

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.

出版信息

Langmuir. 2010 Oct 5;26(19):15430-5. doi: 10.1021/la1021824.

Abstract

Aniline-catalyzed hydrazone ligation between surface-immobilized hydrazines and aldehyde-modified antibodies is shown to be an efficient method for attaching protein capture agents to model oxide-coated biosensor substrates. Silicon photonic microring resonators are used to directly evaluate the efficiency of this surface bioconjugate reaction at various pHs and in the presence or absence of aniline as a nucleophilic catalyst. It is found that aniline significantly increases the net antibody loading for surfaces functionalized over a pH range from 4.5 to 7.4, allowing derivatization of substrates with reduced incubation time and sample consumption. This increase in antibody loading directly results in more sensitive antigen detection when functionalized microrings are employed in a label-free immunoassay. Furthermore, these experiments also reveal an interesting pH-dependent noncovalent binding trend that plays an important role in dictating the amount of antibody attached onto the substrate, highlighting the competing contributions of the bioconjugate reaction rate and the dynamic interactions that control opportunities for a solution-phase biomolecule to react with a substrate-bound reagent.

摘要

固载在表面的腙与醛修饰的抗体之间的苯胺催化腙连接反应,被证明是一种将蛋白质捕获剂连接到模型氧化物涂层生物传感器基底上的有效方法。硅光子微环谐振器被用于直接评估在不同 pH 值、有无苯胺作为亲核催化剂的情况下,这种表面生物缀合反应的效率。研究发现,在 pH 值为 4.5 到 7.4 的范围内,苯胺显著增加了表面的净抗体负载量,从而可以减少孵育时间和样品消耗来对基底进行衍生化。当功能化的微环用于无标记免疫分析时,这种抗体负载的增加直接导致了更灵敏的抗原检测。此外,这些实验还揭示了一种有趣的 pH 依赖性非共价结合趋势,这种趋势在决定附着在基底上的抗体数量方面起着重要作用,突出了生物缀合反应速率和控制溶液相生物分子与基底结合试剂反应机会的动态相互作用的竞争贡献。

相似文献

2
A highly efficient catalyst for oxime ligation and hydrazone-oxime exchange suitable for bioconjugation.
Bioconjug Chem. 2013 Mar 20;24(3):333-42. doi: 10.1021/bc3004167. Epub 2013 Mar 6.
4
Insights into the mechanism and catalysis of oxime coupling chemistry at physiological pH.
Chemistry. 2015 Apr 7;21(15):5980-5. doi: 10.1002/chem.201406458. Epub 2015 Mar 3.
5
Aniline-terminated DNA catalyzes rapid DNA-hydrazone formation at physiological pH.
Chem Commun (Camb). 2014 Apr 14;50(29):3831-3. doi: 10.1039/c4cc00292j. Epub 2014 Mar 4.
6
Importance of ortho proton donors in catalysis of hydrazone formation.
Org Lett. 2013 Apr 5;15(7):1646-9. doi: 10.1021/ol400427x. Epub 2013 Mar 11.
7
Water-soluble organocatalysts for hydrazone and oxime formation.
J Org Chem. 2013 Feb 1;78(3):1184-9. doi: 10.1021/jo302746p. Epub 2013 Jan 15.
8
Enhanced catalysis of oxime-based bioconjugations by substituted anilines.
Bioconjug Chem. 2014 Jan 15;25(1):93-101. doi: 10.1021/bc400380f. Epub 2013 Dec 17.
9
4-aminophenylalanine as a biocompatible nucleophilic catalyst for hydrazone ligations at low temperature and neutral pH.
Bioconjug Chem. 2011 Oct 19;22(10):1954-61. doi: 10.1021/bc2001566. Epub 2011 Oct 4.

引用本文的文献

1
Supported Biomembrane Systems Incorporating Multiarm Polymers and Bioorthogonal Tethering.
Langmuir. 2024 Jun 4;40(22):11401-11410. doi: 10.1021/acs.langmuir.4c00176. Epub 2024 May 20.
2
Biofunctionalization of Multiplexed Silicon Photonic Biosensors.
Biosensors (Basel). 2022 Dec 29;13(1):53. doi: 10.3390/bios13010053.
3
A disulphide bond-mediated hetero-dimer of a hemoprotein and a fluorescent protein exhibiting efficient energy transfer.
RSC Adv. 2022 Oct 6;12(44):28519-28524. doi: 10.1039/d2ra05249k. eCollection 2022 Oct 4.
6
Amino-Acid-Catalyzed Direct Aldol Bioconjugation.
Org Lett. 2018 Sep 7;20(17):5344-5347. doi: 10.1021/acs.orglett.8b02265. Epub 2018 Aug 20.
8
New organocatalyst scaffolds with high activity in promoting hydrazone and oxime formation at neutral pH.
Org Lett. 2015 Jan 16;17(2):274-7. doi: 10.1021/ol503372j. Epub 2014 Dec 29.
10
A genetically encoded aldehyde for rapid protein labelling.
Chem Commun (Camb). 2014 Jul 18;50(56):7424-6. doi: 10.1039/c4cc02000f.

本文引用的文献

3
Multiplexed detection and label-free quantitation of microRNAs using arrays of silicon photonic microring resonators.
Angew Chem Int Ed Engl. 2010 Jun 21;49(27):4608-11. doi: 10.1002/anie.201001712.
8
Selective covalent protein immobilization: strategies and applications.
Chem Rev. 2009 Sep;109(9):4025-53. doi: 10.1021/cr8004668.
9
High-efficiency labeling of sialylated glycoproteins on living cells.
Nat Methods. 2009 Mar;6(3):207-9. doi: 10.1038/nmeth.1305. Epub 2009 Feb 22.
10
Label-free technologies for quantitative multiparameter biological analysis.
Anal Bioanal Chem. 2009 May;394(1):121-35. doi: 10.1007/s00216-009-2637-8. Epub 2009 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验