Department of Chemistry and the Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
Langmuir. 2010 Aug 3;26(15):12817-23. doi: 10.1021/la1022642.
To study complex cell behavior on model surfaces requires biospecific interactions between the interfacing cell and material. Developing strategies to pattern well-defined molecular gradients on surfaces is difficult but critical for studying cell adhesion, polarization, and directed cell migration. We introduce a new strategy, microfluidic SPREAD (Solute PeRmeation Enhancement And Diffusion) for inking poly(dimethylsiloxane) (PDMS) microfluidic cassettes with a gradient of alkanethiol. Using SPREAD, an oxyamine-terminated alkanethiol is able to permeate into a PDMS microfluidic cassette, creating a chemical gradient, which can subsequently be transfer printed onto a gold surface to form the corresponding chemoselective gradient of oxyamine-alkanethiol self-assembled monolayer (SAM). By first patterning regions of the gold surface with a protective SAM using microfluidic lithography, directional gradients can be stamped exclusively onto unprotected bare gold regions to form single cell gradient microarrays. The microfluidic SPREAD strategy can also be extended to print micrometer-sized islands of radial SAM gradients with excellent geometric resolution. The immobilization of a cell adhesive Arg-Gly-Asp (RGD)-ketone peptide to the SPREAD stamped oxyamine-alkanethiol SAMs provides a stable interfacial oxime linkage for biospecific studies of cell adhesion, polarity, and migration.
要研究模型表面上复杂的细胞行为,需要细胞与材料之间具有生物特异性相互作用。开发在表面上形成定义良好的分子梯度的策略具有挑战性,但对于研究细胞黏附、极化和定向细胞迁移至关重要。我们引入了一种新的策略,即微流控 SPREAD(溶质渗透增强和扩散),用于对聚二甲基硅氧烷(PDMS)微流控盒进行烷硫醇梯度划线。使用 SPREAD,末端为氧胺的烷硫醇能够渗透到 PDMS 微流控盒中,形成化学梯度,随后可以将其转移印刷到金表面上,形成相应的化学选择性氧胺-烷硫醇自组装单层(SAM)梯度。通过首先使用微流控光刻对金表面的部分区域进行图案化,使用微流控 SPREAD 可以将定向梯度仅压印到未保护的裸露金区域上,形成单细胞梯度微阵列。微流控 SPREAD 策略还可以扩展为打印具有出色几何分辨率的径向 SAM 梯度的微米级岛屿。将细胞黏附 Arg-Gly-Asp(RGD)-酮肽固定到 SPREAD 压印的氧胺-烷硫醇 SAM 上,为细胞黏附、极性和迁移的生物特异性研究提供了稳定的界面肟键。