Suppr超能文献

用于定量多参数生物分析的无标记技术。

Label-free technologies for quantitative multiparameter biological analysis.

作者信息

Qavi Abraham J, Washburn Adam L, Byeon Ji-Yeon, Bailey Ryan C

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA.

出版信息

Anal Bioanal Chem. 2009 May;394(1):121-35. doi: 10.1007/s00216-009-2637-8. Epub 2009 Feb 17.

Abstract

In the postgenomic era, information is king and information-rich technologies are critically important drivers in both fundamental biology and medicine. It is now known that single-parameter measurements provide only limited detail and that quantitation of multiple biomolecular signatures can more fully illuminate complex biological function. Label-free technologies have recently attracted significant interest for sensitive and quantitative multiparameter analysis of biological systems. There are several different classes of label-free sensors that are currently being developed both in academia and in industry. In this critical review, we highlight, compare, and contrast some of the more promising approaches. We describe the fundamental principles of these different methods and discuss advantages and disadvantages that might potentially help one in selecting the appropriate technology for a given bioanalytical application.

摘要

在后基因组时代,信息为王,富含信息的技术是基础生物学和医学的关键驱动因素。现在已知单参数测量仅提供有限的细节,而多个生物分子特征的定量分析可以更全面地阐明复杂的生物学功能。无标记技术最近在生物系统的灵敏和定量多参数分析方面引起了极大的关注。目前,学术界和工业界都在开发几种不同类型的无标记传感器。在这篇批判性综述中,我们重点介绍、比较和对比了一些更有前景的方法。我们描述了这些不同方法的基本原理,并讨论了其优缺点,这可能有助于人们为特定的生物分析应用选择合适的技术。

相似文献

1
Label-free technologies for quantitative multiparameter biological analysis.
Anal Bioanal Chem. 2009 May;394(1):121-35. doi: 10.1007/s00216-009-2637-8. Epub 2009 Feb 17.
3
Editorial [Hot topic: Label-free detection technologies (Guest editor: John D. McCarter)].
Comb Chem High Throughput Screen. 2009 Sep;12(8):740. doi: 10.2174/138620709789104906.
4
New trends in single-molecule bioanalytical detection.
Anal Bioanal Chem. 2020 Aug;412(21):5005-5014. doi: 10.1007/s00216-020-02540-9. Epub 2020 Mar 17.
5
Current awareness in phytochemical analysis.
Phytochem Anal. 2003 Nov-Dec;14(6):389-96. doi: 10.1002/pca.681.
7
Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors.
Sensors (Basel). 2010;10(5):5133-59. doi: 10.3390/s100505133. Epub 2010 May 25.
8
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
10
Tissue storage affects lipidome profiling in comparison to in vivo microsampling approach.
Sci Rep. 2018 May 3;8(1):6980. doi: 10.1038/s41598-018-25428-2.

引用本文的文献

1
Progress in silicon-based reconfigurable and programmable all-optical signal processing chips.
Front Optoelectron. 2025 May 12;18(1):10. doi: 10.1007/s12200-025-00154-6.
2
Computational approaches in rheumatic diseases - Deciphering complex spatio-temporal cell interactions.
Comput Struct Biotechnol J. 2023 Aug 6;21:4009-4020. doi: 10.1016/j.csbj.2023.08.005. eCollection 2023.
3
Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches.
Biosensors (Basel). 2023 May 27;13(6):584. doi: 10.3390/bios13060584.
4
Enhanced Label-Free Nanoplasmonic Cytokine Detection in SARS-CoV-2 Induced Inflammation Using Rationally Designed Peptide Aptamer.
ACS Appl Mater Interfaces. 2022 Nov 2;14(43):48464-48475. doi: 10.1021/acsami.2c14748. Epub 2022 Oct 25.
5
Demonstration of Ultra-High-Q Silicon Microring Resonators for Nonlinear Integrated Photonics.
Micromachines (Basel). 2022 Jul 21;13(7):1155. doi: 10.3390/mi13071155.
6
Disease-Relevant Single Cell Photonic Signatures Identify S100β Stem Cells and their Myogenic Progeny in Vascular Lesions.
Stem Cell Rev Rep. 2021 Oct;17(5):1713-1740. doi: 10.1007/s12015-021-10125-x. Epub 2021 Mar 17.
7
Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures.
Beilstein J Nanotechnol. 2019 Apr 26;10:967-974. doi: 10.3762/bjnano.10.97. eCollection 2019.
9
Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices.
Nanophotonics. 2012 Dec;1(3-4):267-291. doi: 10.1515/nanoph-2012-0021. Epub 2012 Dec 6.
10
Label-free cytokine micro- and nano-biosensing towards personalized medicine of systemic inflammatory disorders.
Adv Drug Deliv Rev. 2015 Dec 1;95:90-103. doi: 10.1016/j.addr.2015.09.005. Epub 2015 Sep 25.

本文引用的文献

1
Transparent, Low-Impedance Inkjet-Printed PEDOT:PSS Microelectrodes for Multi-modal Neuroscience.
Phys Status Solidi A Appl Mater Sci. 2022 May;219(10). doi: 10.1002/pssa.202100683. Epub 2022 Feb 25.
4
An optical fiber-taper probe for wafer-scale microphotonic device characterization.
Opt Express. 2007 Apr 16;15(8):4745-52. doi: 10.1364/oe.15.004745.
5
Two-dimensional silicon photonic crystal based biosensing platform for protein detection.
Opt Express. 2007 Apr 16;15(8):4530-5. doi: 10.1364/oe.15.004530.
6
Real-time detection of airborne viruses on a mass-sensitive device.
Appl Phys Lett. 2008 Jul 7;93(1):13901. doi: 10.1063/1.2956679. Epub 2008 Jul 8.
7
Effect of fluorescently labeling protein probes on kinetics of protein-ligand reactions.
Langmuir. 2008 Dec 2;24(23):13399-405. doi: 10.1021/la802097z.
8
Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes.
Nano Lett. 2008 Sep;8(9):2718-24. doi: 10.1021/nl801043t. Epub 2008 Aug 19.
9
Label-free, all-electrical, in situ human epidermal growth receptor 2 detection.
Rev Sci Instrum. 2008 Jul;79(7):076101. doi: 10.1063/1.2949831.
10
Detection of human proteins using arrayed imaging reflectometry.
Biosens Bioelectron. 2008 Oct 15;24(2):334-7. doi: 10.1016/j.bios.2008.05.003. Epub 2008 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验