Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
Alzheimer Dis Assoc Disord. 2011 Jan-Mar;25(1):85-92. doi: 10.1097/WAD.0b013e3181ed1160.
Recently the senior author and his associates developed a spatiotemporal wavelet-chaos methodology for the analysis of electroencephalograms (EEGs) and their subbands for discovering potential markers of abnormality in Alzheimer disease (AD). In this study, fractal dimension (FD) is used for the evaluation of the dynamical changes in the AD brain. The approach presented in this study is based on the research ideology that nonlinear features, such as FD, may not show significant differences between the AD and the control groups in the band-limited EEG, but may manifest in certain subbands. First, 2 different FD algorithms for computing the fractality of EEGs are investigated and their efficacy for yielding potential mathematical markers of AD is compared. They are Katz FD (KFD) and Higuchi FD. Significant features in different loci and different EEG subbands or band-limited EEG for discrimination of the AD and the control groups are determined by analysis of variation. The most discriminative FD and the corresponding loci and EEG subbands for discriminating between AD and healthy EEGs are discovered. As KFD of all loci in the β subband showed very high ability (P value <0.001) in discriminating between the groups, all KFDs are abstracted in 1 global KFD by averaging across loci in each of the 2 eyes-closed and eyes-open conditions. This leads to a more robust classification in terms of common variation of electrode positions than a classification based on separate KFDs of certain loci. Finally, based on the 2 global features separately and together, linear discriminant analysis is used to classify EEGs of AD and elderly normal patients. A high accuracy of 99.3% was obtained for the diagnosis of the AD based on the global KFD in the β-band of the eyes-closed condition with a sensitivity of 100% and a specificity of 97.8%.
最近,资深作者及其同事开发了一种时空小波混沌方法,用于分析脑电图 (EEG) 及其子带,以发现阿尔茨海默病 (AD) 中的潜在异常标志物。在这项研究中,分形维数 (FD) 用于评估 AD 大脑的动态变化。本研究提出的方法基于这样一种研究思想,即非线性特征(如 FD)在受限带 EEG 中,AD 组和对照组之间可能没有显著差异,但可能在某些子带中表现出来。首先,研究了两种用于计算 EEG 分形性的不同 FD 算法,并比较了它们产生 AD 潜在数学标志物的效果。这两种算法分别是 Katz FD (KFD) 和 Higuchi FD。通过方差分析确定了不同位置和不同 EEG 子带或受限带 EEG 中用于区分 AD 组和对照组的显著特征。发现了最具区分性的 FD 及其对应的位置和 EEG 子带,用于区分 AD 和健康 EEG。由于所有位置的β子带的 KFD 在组间区分上表现出非常高的能力(P 值<0.001),因此通过在每只眼睛闭合和睁开条件下对每个位置的 KFD 求平均值,从所有位置的 KFD 中抽象出 1 个全局 KFD。这导致基于电极位置的共同变化的分类比基于特定位置的 KFD 的分类更稳健。最后,基于这两个全局特征单独和共同,使用线性判别分析对 AD 和老年正常患者的 EEG 进行分类。基于闭眼状态下β带的全局 KFD,对 AD 的诊断准确率达到 99.3%,灵敏度为 100%,特异性为 97.8%。