Suppr超能文献

一种使用 EEG 信号对轻度认知障碍和阿尔茨海默病进行自动鉴别诊断的新方法。

A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer's disease using EEG signals.

机构信息

Autonomous University of Queretaro (UAQ), Faculty of Engineering, Departments Biomedical and Electromechanical, Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, C. P. 76807, San Juan del Río, Qro., Mexico.

IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo c/da Casazza, SS. 113, 98124, Messina, Italy.

出版信息

J Neurosci Methods. 2019 Jul 1;322:88-95. doi: 10.1016/j.jneumeth.2019.04.013. Epub 2019 May 2.

Abstract

BACKGROUND

EEG signals obtained from Mild Cognitive Impairment (MCI) and the Alzheimer's disease (AD) patients are visually indistinguishable.

NEW METHOD

A new methodology is presented for differential diagnosis of MCI and the AD through adroit integration of a new signal processing technique, the integrated multiple signal classification and empirical wavelet transform (MUSIC-EWT), different nonlinear features such as fractality dimension (FD) from the chaos theory, and a classification algorithm, the enhanced probabilistic neural network model of Ahmadlou and Adeli using the EEG signals.

RESULTS

Three different FD measures are investigated: Box dimension (BD), Higuchi's FD (HFD), and Katz's FD (KFD) along with another measure of the self-similarities of the signals known as the Hurst exponent (HE). The accuracy of the proposed method was verified using the monitored EEG signals from 37 MCI and 37 AD patients.

COMPARISON WITH EXISTING METHODS

The proposed method is compared with other methodologies presented in the literature recently.

CONCLUSIONS

It was demonstrated that the proposed method, MUSIC-EWT algorithm combined with nonlinear features BD and HE, and the EPNN classifier can be employed for differential diagnosis of MCI and AD patients with an accuracy of 90.3%.

摘要

背景

轻度认知障碍(MCI)和阿尔茨海默病(AD)患者的脑电图信号在视觉上无法区分。

新方法

通过巧妙地整合一种新的信号处理技术——集成多信号分类和经验小波变换(MUSIC-EWT)、来自混沌理论的不同非线性特征(如分形维数(FD))以及分类算法——增强型 Ahmadlou 和 Adeli 的概率神经网络模型,提出了一种用于 MCI 和 AD 鉴别诊断的新方法,使用 EEG 信号。

结果

研究了三种不同的 FD 度量:盒维数(BD)、Higuchi 的 FD(HFD)和 Katz 的 FD(KFD)以及另一种称为 Hurst 指数(HE)的信号自相似性度量。使用来自 37 名 MCI 和 37 名 AD 患者的监测 EEG 信号验证了所提出方法的准确性。

与现有方法的比较

将所提出的方法与最近文献中提出的其他方法进行了比较。

结论

结果表明,MUSIC-EWT 算法结合非线性特征 BD 和 HE 以及 EPNN 分类器可用于 MCI 和 AD 患者的鉴别诊断,准确率为 90.3%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验