Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu, 18618-689, Brazil.
National Institute for Space Research, Earth System Science Center, São José dos Campos, 12227-010, Brazil.
Sci Rep. 2023 May 20;13(1):8184. doi: 10.1038/s41598-023-32664-8.
Computational analysis of electroencephalographic (EEG) signals have shown promising results in detecting brain disorders, such as Alzheimer's disease (AD). AD is a progressive neurological illness that causes neuron cells degeneration, resulting in cognitive impairment. While there is no cure for AD, early diagnosis is critical to improving the quality of life of affected individuals. Here, we apply six computational time-series analysis methods (wavelet coherence, fractal dimension, quadratic entropy, wavelet energy, quantile graphs and visibility graphs) to EEG records from 160 AD patients and 24 healthy controls. Results from raw and wavelet-filtered (alpha, beta, theta and delta bands) EEG signals show that some of the time-series analysis methods tested here, such as wavelet coherence and quantile graphs, can robustly discriminate between AD patients from elderly healthy subjects. They represent a promising non-invasive and low-cost approach to the AD detection in elderly patients.
对脑电(EEG)信号的计算分析在检测大脑疾病(如阿尔茨海默病(AD))方面取得了有希望的结果。AD 是一种进行性神经疾病,导致神经元细胞退化,从而导致认知障碍。虽然目前尚无治愈 AD 的方法,但早期诊断对于改善受影响个体的生活质量至关重要。在这里,我们应用了六种计算时间序列分析方法(小波相干性、分形维数、二次熵、小波能量、分位数图和可视性图)对来自 160 名 AD 患者和 24 名健康对照者的 EEG 记录进行分析。原始 EEG 信号和经过小波滤波(α、β、θ 和 δ 波段)的 EEG 信号的结果表明,这里测试的一些时间序列分析方法,如小波相干性和分位数图,可以稳健地区分 AD 患者和老年健康受试者。它们代表了一种有前途的非侵入性和低成本的方法,可以在老年患者中进行 AD 检测。